This is part of a larger refactoring the better congregates the builtin structures under the BuiltinDialect. This also removes the problematic "standard" naming that clashes with the "standard" dialect, which is not defined within IR/. A temporary forward is placed in StandardTypes.h to allow time for downstream users to replaced references.
Differential Revision: https://reviews.llvm.org/D92435
When attempting to compute a differential orderIndex we were calculating the
bailout condition correctly, but then an errant "+ 1" meant the orderIndex we
created was invalid.
Added test.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D89115
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
This patch moves the registration to a method in the MLIRContext: getOrCreateDialect<ConcreteDialect>()
This method requires dialect to provide a static getDialectNamespace()
and store a TypeID on the Dialect itself, which allows to lazyily
create a dialect when not yet loaded in the context.
As a side effect, it means that duplicated registration of the same
dialect is not an issue anymore.
To limit the boilerplate, TableGen dialect generation is modified to
emit the constructor entirely and invoke separately a "init()" method
that the user implements.
Differential Revision: https://reviews.llvm.org/D85495
This patch is a follow-up on https://reviews.llvm.org/D81127
BF16 constants were represented as 64-bit floating point values due to the lack
of support for BF16 in APFloat. APFloat was recently extended to support
BF16 so this patch is fixing the BF16 constant representation to be 16-bit.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D81218
This revision allows for creating DenseElementsAttrs and accessing elements using std::complex<APInt>/std::complex<APFloat>. This allows for opaquely accessing and transforming complex values. This is used by the printer/parser to provide pretty printing for complex values. The form for complex values matches that of std::complex, i.e.:
```
// `(` element `,` element `)`
dense<(10,10)> : tensor<complex<i64>>
```
Differential Revision: https://reviews.llvm.org/D79296
This revision adds support for storing ComplexType elements inside of a DenseElementsAttr. We store complex objects as an array of two elements, matching the definition of std::complex. There is no current attribute storage for ComplexType, but DenseElementsAttr provides API for access/creation using std::complex<>. Given that the internal implementation of DenseElementsAttr is already fairly opaque, the only real complexity here is in the printing/parsing. This revision keeps it simple for now and always uses hex when printing complex elements. A followup will add prettier syntax for this.
Differential Revision: https://reviews.llvm.org/D79281
This class allows for mutating an operand range in-place, and provides vector like API for adding/erasing/setting. ODS now uses this class to generate mutable wrappers for named operands, with the name `MutableOperandRange <operand-name>Mutable()`
Differential Revision: https://reviews.llvm.org/D78892
This revision refactors the structure of the operand storage such that there is no additional memory cost for resizable operand lists until it is required. This is done by using two different internal representations for the operand storage:
* One using trailing operands
* One using a dynamically allocated std::vector<OpOperand>
This allows for removing the resizable operand list bit, and will free up APIs from needing to workaround non-resizable operand lists.
Differential Revision: https://reviews.llvm.org/D78875
Summary:
This revision adds two utilities currently present in MLIR to LLVM StringExtras:
* convertToSnakeFromCamelCase
Convert a string from a camel case naming scheme, to a snake case scheme
* convertToCamelFromSnakeCase
Convert a string from a snake case naming scheme, to a camel case scheme
Differential Revision: https://reviews.llvm.org/D78167
Summary: Some data values have a different storage width than the corresponding MLIR type, e.g. bfloat is currently stored as a double.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D72478
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
The generated build methods have result type before the arguments (operands and attributes, which are also now adjacent in the explicit create method). This also results in changing the create method's ordering to match most build method's ordering.
PiperOrigin-RevId: 271755054
Use of std::isupper and std::islower need <cctype> header file. Fix
that and also fix the header of a file to match the file name.
PiperOrigin-RevId: 260816852
All non-argument attributes specified for an operation are treated as
decorations on the result value and (de)serialized using OpDecorate
instruction. An error is generated if an attribute is not an argument,
and the name doesn't correspond to a Decoration enum. Name of the
attributes that represent decoerations are to be the snake-case-ified
version of the Decoration name.
Add utility methods to convert to snake-case and camel-case.
PiperOrigin-RevId: 260792638
Some compilers find initializer list constructors from boolean literals
ambiguous between ArrayRef<bool> and ArrayRef<Attribute>. Call the
ArrayRef<bool> constructor explicitly to disambiguate.
PiperOrigin-RevId: 253224859
We now have sufficient extensibility in dialects to move attribute components
such as SDBM out of the core IR into a dedicated dialect and make them
optional. Introduce an SDBM dialect and move the code. This is a mostly
non-functional change.
--
PiperOrigin-RevId: 249244802
A couple of warnings was produced when compiling this test due to comaprisons
with a signed literal. Used unsigned literals instead.
--
PiperOrigin-RevId: 249242970
Affine expressions are designed as components of an attribute and are unique'd
in the MLIRContext. When affine expressions were implemented, uniqu'ing
objects in a context required to modify MLIRContext implementation. This is no
longer the case as generic StorageUniquer has been introduced. Port the
AffineExpr construction to use the new infrastructure by introducing an
affineUniquer into the MLIRContext.
--
PiperOrigin-RevId: 249207539
SDBM has an output format representing the unterlying matrix and stripe
expressions. Move the SDBM tests from unit testing framework to
FileCheck-based tests, printing them to the standard output and using FileCheck
to test the output. Tests that check the API proper (e.g. that SDBM
expressions have a specific subtype) and that rely on non-syntatic properties
(equality of the set of constraints) are not ported.
--
PiperOrigin-RevId: 249006055
Provide an "unsafe" version of the overloaded arithmetic operators for SDBM
expressions. These operators expect the operands to be of the right SDBM
expression subtype and assert if they are not. They also perform simple
folding operations as well as some semantically correct operations that
construct an SDBM expression of a different subtype, e.g., a difference
expression if the RHS of an operator+ is a negated variable. These operators
are scoped in a namespace to allow for a future "safe" version of the operators
that propagates null expressions to denote the error state when expressions
have wrong subtypes.
--
PiperOrigin-RevId: 248704153
Implement the storage class for striped difference-bound matrices (SDBM) as a
container with a difference bounds matrix and a list of stripe expressions. An
SDBM defines an integer set. Provide conversion mechanisms between lists of
SDBM expressions treated as equalities with zero or less-than-or-equal
inequalities with zero.
--
PiperOrigin-RevId: 248702871
tensor<*xf32> could be a tensor<1xf32> at runtime but this verifyShapeMatch would return failure and say function is invalid.
--
PiperOrigin-RevId: 248583038
This trait only works for tensor and vector types at the moment, verifying that the element type of an op with only tensor and vector types match. Added a unit test for it as there is no op currently in core that uses this trait.
--
PiperOrigin-RevId: 246661697
Since SDBM expressions are a subset of affine expressions, they can be
converted to affine expressions in a straightforward way. The inverse
conversion may fail when the affine expression is not an SDBM. Implement the
inverse convresion assuming affine expressions are simplified and
canonicalizied, detect subtractive and multiplicative forms of the stripe
operation.
--
PiperOrigin-RevId: 245494735
Striped difference-bound matrix expressions are a subset of affine expressions
supporting low-complexity algorithms that can be useful for loop
transformations. This introduces the basic data data structures for building
such expressions and unique'ing them in a MLIRContext.
--
PiperOrigin-RevId: 245380206