Swift async functions receive function arguments inside a
heap-allocated data structure, similar to how ObjC block captures or
C++ coroutine arguments are implement. In DWARF they are described
relative to an entry value that produces a pointer into that heap
object. At typical location looks like
DW_OP_entry_value [ DW_OP_reg14 ] DW_OP_deref DW_OP_plus_uconst 32 DW_OP_deref
This allows the unwinder (which has special ABI knowledge to restore
the contents of r14) to push the base address onto the stack thus
allowing the deref/offset operations to continue. The result of the
entry value is a scalar, because DW_OP_reg14 is a register location —
as it should be since we want to restore the pointer value contained
in r14 at the beginning of the function and not the historical memory
contents it was pointing to. The entry value should restore the
address, which is still valid, not the contents at function entry.
To make this work, we need to allow LLDB to dereference Scalar stack
results like load addresses, which is what this patch
does. Unfortunately it is difficult to test this in isolation, since
the DWARFExpression unit test doesn't have a process.
Differential Revision: https://reviews.llvm.org/D96549
The comment for ValueType claims that all values <1 are errors, but
not all switch statements take this into account. This patch
introduces an explicit Error case and deletes all default: cases, so
we get warned about incomplete switch coverage.
https://reviews.llvm.org/D96537
It looks like a previous change switched these from LLDB_LOGF but did not update the format strings.
Differential Revision: https://reviews.llvm.org/D96550
This test supposed to check the test base we are using for pexpect tests, but instead it used the normal TestBase
class we use for all other tests. TestBase already had the substrs type check since D88792 so this
test was passing because of that.
This just changes the test base of the test to the pexpect one so that the `expect` calls find their intended
target function. Also moves the check to the very start so that we can check the argument without
actually having to start a terminal and all that jazz.
(I found this by accident as D88792 got somehow reverted in a downstream branch so this test started
failing).
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D96556
The 'r' and 'run' aliases were different based on the target
architecture. I suspect the intention was to disable shell expansion on
embedded devices. This fixes TestCustomShell.test on AS.
It is possible for the GetSectionHeaderByIndex lookup to fail because
the previous FindSectionContainingFileAddress lookup found a segment
instead of a section. This is possible if the binary does not have
a PLT (which means that lld will in some circumstances set DT_JMPREL
to 0, which is typically an address that is part of the ELF headers
and not in a section) and may also be possible if the section headers
have been stripped. To handle this possibility, replace the assert
with an if.
Differential Revision: https://reviews.llvm.org/D93438
`QueueThreadPlanForStepInRange` accepts a `step_into_target`, but the constructor for
`ThreadPlanStepInRange` does not. Instead, a caller would optionally call
`SetStepInTarget()` in a separate statement.
This change adds `step_into_target` as a constructor argument. This simplifies
construction of `ThreadPlanSP`, by avoiding a subsequent downcast and conditional
assignment. This constructor is already used in downstream repos.
Differential Revision: https://reviews.llvm.org/D96539
Multi-configuration generators (such as Visual Studio and Xcode) allow the specification of a build flavor at build time instead of config time, so the lit configuration files need to support that - and they do for the most part. There are several places that had one of two issues (or both!):
1) Paths had %(build_mode)s set up, but then not configured, resulting in values that would not work correctly e.g. D:/llvm-build/%(build_mode)s/bin/dsymutil.exe
2) Paths did not have %(build_mode)s set up, but instead contained $(Configuration) (which is the value for Visual Studio at configuration time, for Xcode they would have had the equivalent) e.g. "D:/llvm-build/$(Configuration)/lib".
This seems to indicate that we still have a lot of fragility in the configurations, but also that a number of these paths are never used (at least on Windows) since the errors appear to have been there a while.
This patch fixes the configurations and it has been tested with Ninja and Visual Studio to generate the correct paths. We should consider removing some of these settings altogether.
Reviewed By: JDevlieghere, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96427
Right now when running `expr --top-level -- void foo() {}`, LLDB just prints a cryptic
`error: Couldn't find $__lldb_expr() in the module` error. The reason for that is
that if we don't have a running process, we try to set our execution policy to always use the
IR interpreter (ExecutionPolicyNever) which works even without a process. However
that code didn't consider the special ExecutionPolicyTopLevel which we use for
top-level expressions. By changing the execution policy to ExecutionPolicyNever,
LLDB thinks we're actually trying to interpret a normal expression inside our
`$__lldb_expr` function and then fails when looking for it.
This just adds an exception for top-level expressions to that code and a bunch of tests.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D91723
Clang emits a warning when accessing an Objective-C getter but not using the result.
This gets triggered when just trying to print a getter value in the expression parser (where
Clang just sees a normal expression like `obj.getter` while parsing).
This patch just disables the warning in the expression parser (similar to what we do with
the C++ equivalent of just accessing a member variable but not doing anything with it).
Reviewed By: kastiglione
Differential Revision: https://reviews.llvm.org/D94307
This used to be a LLDB_LOGF call that used the printf %s syntax.
0ab109d43d changed it to LLDB_LOG but didn't
update this format string to use formatv's syntax so this just printed '%s'.
Our test configuration logic assumes that the tests can be run either
with debugserver or with lldb-server. This is not entirely correct,
since lldb server has two "personalities" (platform server and debug
server) and debugserver is only a replacement for the latter.
A consequence of this is that it's not possible to test the platform
behavior of lldb-server on macos, as it is not possible to get a hold of
the lldb-server binary.
One solution to that would be to duplicate the server configuration
logic to be able to specify both executables. However, that seems
excessively redundant.
A well-behaved lldb should be able to find the debug server on its own,
and testing lldb with a different (lldb-|debug)server does not seem very
useful (even in the out-of-tree debugserver setup, we copy the server
into the build tree to make it appear "real").
Therefore, this patch deletes the configuration altogether and changes
the low-level server retrieval functions to be able to both lldb-server
and debugserver paths. They do this by consulting the "support
executable" directory of the lldb under test.
Differential Revision: https://reviews.llvm.org/D96202
While learning about ThreadPlan, I did a bit of cleanup:
* Remove unused code
* Move functions to protected where applicable
* Remove virtual for functions that are not overridden
Differential Revision: https://reviews.llvm.org/D96277
Although it is located under tools/lldb-server, this test is very
different that other lldb-server tests. The most important distinction
is that it does not test lldb-server directly, but rather interacts with
it through the lldb client. It also tests the relevant client
functionality (the platform connect command, which is even admitted in
the test name). The fact that this test is structured as a lldb-server
test means it cannot access most of the goodies available to the
"normal" lldb tests (the runCmd function, which it reimplements; the
run_break_set_by_symbol utility function; etc.).
This patch makes it a full-fledged lldb this, and rewrites the relevant
bits to make use of the standard features. I also move the test into the
"commands" subtree to better reflect its new status.
BlockPointerSyntheticFrontEnd does a CopyType which results in it copying the type
back into its own context. This will result in a call to ASTImporterDelegate::setOrigin
with &decl->getASTContext() == origin.ctx this can result in an infinite recursion
later on in ASTImporter since it will attempt to find the decl in its origin which will be itself.
Differential Revision: https://reviews.llvm.org/D96366
Introduce a minimal support for the 32-bit powerpc platform. This
includes support for GPR and FPR registers. I also needed to add
software breakpoint opcode for PPC32/PPC64 (big endian), and to fix
offsets in RegisterInfos_powerpc.h (used only by FreeBSD register
context to be globally unique rather than relative to each struct).
Differential Revision: https://reviews.llvm.org/D95947
These two `AppleThreadPlanStepThrough` thread plans have parameterized behavior
that is unutilized. To make their interface and implementation simpler, this
change inlines those outside parameters.
Differential Revision: https://reviews.llvm.org/D96276
Check a `Block` pointer before dereferencing.
Using `function.mangled-name` led to a crash for a frame where the symbol
context had no block info. In my case, the frame's function was a system frame.
Differential Revision: https://reviews.llvm.org/D96307
Introduce mips64 support to match the legacy FreeBSD plugin. Similarly
to the legacy plugin, the code does not support FPU registers at the
moment. The support for them will be submitted separately as it
requires changes to the register context shared by both plugins.
This also includes software single-stepping support that is moved from
the Linux plugin into a common Utility class. The FreeBSD code also
starts explicitly ignoring EINVAL from PT_CLEARSTEP since this is easier
to implement than checking whether hardware single-stepping were used.
Differential Revision: https://reviews.llvm.org/D95802
There is a .categories file in the python_api directory that makes all nested tests
belong to the category "pyapi". The decorator is unnecessary for these tests.
The Debugger didn't take the Process's run lock, that causes deadlocks and races
after applying https://reviews.llvm.org/D92164 revision. Since ExecutionContextRef
does the same job correctly, Debugger::GetSelectedExecutionContext just can use it
to build execution context upon the selected target.
Native register descriptions in LLDB specify lldb register numbers in
value_regs and invalidate_regs lists. These register numbers may not
match with Process gdb-remote register numbers which are generated by
native process after counting all registers in its register sets.
It was coincidentally not causing any problems as we never came across
a native target with dynamically changing register sets and register
numbers generated by counter matched with LLDB native register numbers.
This came up while testing target AArch64 SVE which can choose register
sets based on underlying hardware.
This patch fixes this behavior and always tries to use remote register
numbers while reading/writing registers over gdb-remote protocol.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D77043
This patch tries to improve memory-read from core files
(in order to improve disassembly functionality).
I am using RHEL 7.7 (linux kernel 3.10) and for a lot of cases,
I was not able to disassemble some functions from backtrace when
debugging crashes from core files. It outputs some dummy code.
The cause of the problem was the fact we are returning all the zeros
from ProcessElfCore::ReadMemory() that is being called within
Disassembler::ParseInstructions() and it disassembles some dummy
opcodes from the buffer returned. Therefore, we are removing zero
bytes filling (padding) completely.
Differential Revision: https://reviews.llvm.org/D93939
This test passes on arm64 (Apple Silicon). I assume that "aarch64" still
ensures this gets skipped on Linux. I don't have access to such and
environment so I'll have to rely on the bot complaining.
The Python code generated by SWIG is compatible with both Python 2 and
Python 3. The -py3 option enables Python 2 incompatible features such as
function annotations and abstract base classes.
Differential revision: https://reviews.llvm.org/D96096
The element count getter can just be in the header. Also doxygenify some of the
comments and document m_argv's terminating nullptr element that the other
comments keep mentioning.
Replace the dotest command line options and various cmake variables,
which are used for passing the locations of llvm tools to the API tests
with a single variable, which points to the directory these tools are
placed in. Besides reducing repetition, this also makes things more
similar to how "normal" llvm tests are configured.
Differential Revision: https://reviews.llvm.org/D95261
@mstorsjo found a mistake that I made when trying to fix some Windows
compilation errors encountered by @stella.stamenova.
I was incorrectly using the LLVM_ON_UNIX macro. In any case, proper use
of
#if defined(_WIN32)
should be the actual fix.
Differential Revision: https://reviews.llvm.org/D96060
This patch effectively does the following 3 things:
- Centralize the logic to figure out if a compiler flag is supported.
- Stop sanity checking whether the compiler works at all. While useful,
that's not the decorator's responsibility.
- Invoke the compiler with xcrun on Darwin so we know where to find the
sysroot.
On my macOS Big Sur system, the clang invocation couldn't find libSystem
and would fail the sanity check in the decorator. This meant that the
test suite would always try to run the ASan/UBSan/TSan tests, regardless
of whether compiler-rt was built.
Differential revision: https://reviews.llvm.org/D95995