My understanding (from reading just the llvm code) is that
* most ppc cpus have a "sync n" instruction and an msync alias that is "sync 0".
* "book e" cpus instead have a msync instruction and not the more
general "sync n"
This patch reflects that in the .td files, allowing a single codepath for
asm ond obj streamer and incidentelly fixes a crash when EmitRawText was
called on a obj streamer.
llvm-svn: 199832
PNaCl and Emscripten can both handle va_arg IR instructions with
struct type.
Also add a test to cover generating a va_arg IR instruction from
va_arg in C on le32 (as already handled by VisitVAArgExpr() in
CGExprScalar.cpp), which was not covered by a test before.
(This fixes https://code.google.com/p/nativeclient/issues/detail?id=2381)
Differential Revision: http://llvm-reviews.chandlerc.com/D2539
llvm-svn: 199830
different number of elements.
Bitcasts were passing with vectors of pointers with different number of
elements since the number of elements was checking
SrcTy->getVectorNumElements() == SrcTy->getVectorNumElements() which
isn't helpful. The addrspacecast was also wrong, but that case at least
is caught by the verifier. Refactor bitcast and addrspacecast handling
in castIsValid to be more readable and fix this problem.
llvm-svn: 199821
not using backing ivar warning, ignore when
property is not being synthesized (user declared its
implementation @dynamic). // rdar://1583425
llvm-svn: 199820
currently, for thumbv8, two predefined macros are missing:
define __THUMB_INTERWORK__ 1
define __THUMB_INTERWORK__ 1
This patch adds them for thumbv8.
llvm-svn: 199819
This patch restores the ARM mode if the user's inline assembly
does not. In the object streamer, it ensures that instructions
following the inline assembly are encoded correctly and that
correct mapping symbols are emitted. For the asm streamer, it
emits a .arm or .thumb directive.
This patch does not ensure that the inline assembly contains
the ADR instruction to switch modes at runtime.
The problem we need to solve is code like this:
int foo(int a, int b) {
int r = a + b;
asm volatile(
".align 2 \n"
".arm \n"
"add r0,r0,r0 \n"
: : "r"(r));
return r+1;
}
If we compile this function in thumb mode then the inline assembly
will switch to arm mode. We need to make sure that we switch back to
thumb mode after emitting the inline assembly or we will incorrectly
encode the instructions that follow (i.e. the assembly instructions
for return r+1).
Based on patch by David Peixotto
Change-Id: Ib57f6d2d78a22afad5de8693fba6230ff56ba48b
llvm-svn: 199818
Before:
std::unique_ptr<int[]> foo() {}
After:
std::unique_ptr<int []> foo() {}
Also, the formatting could go severely wrong after such a function
before.
llvm-svn: 199817
identify_magic is not free, so we should avoid calling it twice. The argument
also makes it cheap for createBinary to just forward to createObjectFile.
llvm-svn: 199813
This actually totally breaks and causes the machine verifier to cry in several cases, one of which being:
%RAX<def> = COPY %RCX<kill>
%ECX<def> = COPY %EAX<kill>, %RAX<imp-use,kill>
These subregister copies are together identified as noops, so are both removed. However, the second one as it has an imp-use gets converted into a kill:
%ECX<def> = KILL %EAX<kill>, %RAX<imp-use,kill>
As the original COPY has been removed, the verifier goes into tears at the use of undefined EAX and RAX.
There are several hacky solutions to this hacky problem (which is all to do with imp-use/def weirdnesses), but the least hacky I've come up with is to *always* remove COPYs by converting to KILLs. KILLs are no-ops to the code generator so the generated code doesn't change (which is why they were partially used in the first place), but using them also keeps the def/use and imp-def/imp-use chains alive:
%RAX<def> = KILL %RCX<kill>
%ECX<def> = KILL %EAX<kill>, %RAX<imp-use,kill>
The patch passes all test cases including the ones that check the removal of MOVs in this circumstance, along with an extra test I added to check subregister behaviour (which made the machine verifier fall over before my patch).
The patch also adds some DEBUG() statements because the file hadn't got any.
llvm-svn: 199797
Lift the getFunctionDecl() utility out of the parser into a general
Decl::getAsFunction() and use it to simplify other parts of the implementation.
Reduce isFunctionOrFunctionTemplate() to a simple type check that works the
same was as the other is* functions and move unwrapping of shadowed decls to
callers so it doesn't get run twice.
Shuffle around canSkipFunctionBody() to reduce virtual dispatch on ASTConsumer.
There's no need to query when we already know the body can't be skipped.
llvm-svn: 199794
This involved making CheckReturnStackAddr into a static function, which
is now called by a top-level return value checking routine called
CheckReturnValExpr.
llvm-svn: 199790