When building libcxx, libcxxabi, and libunwind the build environment may
specify any number of sanitizers. For some build feature tests these
sanitizers must be disabled to prevent spurious linking errors. With
-fsanitize= this is straight forward with -fno-sanitize=all. With
-fsanitize-coverage= there is no -fno-sanitize-coverage=all, but there
is the equivalent undocumented but tested -fsanitize-coverage=0.
The current build rules fail to disable 'trace-pc-guard'. By disabling
all sanitize-coverage flags, including 'trace-pc-guard', possible
spurious linker errors are prevented. In particular, this allows libcxx,
libcxxabi, and libunwind to be built with HonggFuzz.
CMAKE_REQUIRED_FLAGS is extra compile flags when running CMake build
configuration steps (like check_cxx_compiler_flag). It does not affect
the compile flags for the actual build of the project (unless of course
these flags change whether or not a given source compiles and links or
not). So libcxx, libcxxabi, and libunwind will still be built with any
specified sanitize-coverage as before. The build configuration steps
(which are mostly checking to see if certain compiler flags are
available) will not try to compile and link "int main() { return 0;}"
(or other specified source) with sanitize-coverage (which can fail to
link at this stage in building, since the final compile flags required
are yet to be determined).
The change to LIBFUZZER_CFLAGS was done to keep it consistent with the
obvious intention of disabling all sanitize-coverage. This appears to
be intentional, preventing the fuzzer driver itself from showing up in
any coverage calculations.
Reviewed By: #libunwind, #libc, #libc_abi, ldionne, phosek
Differential Revision: https://reviews.llvm.org/D116050
Currently we use very common names for macros like ACQUIRE/RELEASE,
which cause conflicts with system headers.
Prefix all macros with SANITIZER_ to avoid conflicts.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D116652
This allows DFSan to find tainted values used to control program behavior.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D116207
This allows their reuse across projects. The name of the module
is intentionally generic because we would like to move more platform
checks there.
Differential Revision: https://reviews.llvm.org/D115276
This reverts commit 640beb38e7.
That commit caused performance degradtion in Quicksilver test QS:sGPU and a functional test failure in (rocPRIM rocprim.device_segmented_radix_sort).
Reverting until we have a better solution to s_cselect_b64 codegen cleanup
Change-Id: Ibf8e397df94001f248fba609f072088a46abae08
Reviewed By: kzhuravl
Differential Revision: https://reviews.llvm.org/D115960
Change-Id: Id169459ce4dfffa857d5645a0af50b0063ce1105
This will allow linking in the callbacks directly instead of using PLT.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D116182
A signal handler can alter ucontext_t to affect execution after
the signal returns. Check that the contents are initialized.
Restoring unitialized values in registers can't be good.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D116209
ucontext_t can be larger than its static size if it contains
AVX state and YMM/ZMM registers.
Currently a signal handler that tries to access that state
can produce false positives with random origins on stack.
Account for the additional ucontext_t state.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D116208
This is a segmentation fault in INTERCEPTOR function on a special edge
case of strstr libc call. When 'Haystack'(main string to be examined) is
NULL and 'needle'(sub-string to be searched in 'Haystack') is an empty
string then it hits a SEGV while using sanitizers and as a 'string not
found' case otherwise.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D115919
In D116472 we created conditionally defined variables for the tools to
unbreak the legacy build where they are in `llvm/tools`.
The runtimes are not tools, so that flexibility doesn't matter. Still,
it might be nice to define (unconditionally) and use the variable for
the runtimes simply to make the code a bit clearer and document what is
going on.
Also, consistently put project dirs at the beginning, not end of `CMAKE_MODULE_PATH`. This ensures they will properly shadow similarly named stuff that happens to be later on the path.
Reviewed By: mstorsjo, #libunwind, #libc, #libc_abi, ldionne
Differential Revision: https://reviews.llvm.org/D116477
It is likely to become used again, if other projects want their own per-project
install directory variables. `install` is removed from the name since it is not inherently about installing.
Reviewed By: stephenneuendorffer
Differential Revision: https://reviews.llvm.org/D115746
When using debug info for profile correlation, avoid adding duplicate
functions in the synthetic Data section.
Before this patch, n duplicate function entries in the Data section would
cause counter values to be a factor of n larger. I built instrumented
clang with and without debug info correlation and got these summaries.
```
# With Debug Info Correlate
$ llvm-profdata show default.profdata
Instrumentation level: IR entry_first = 0
Total functions: 182530
Maximum function count: 52034
Maximum internal block count: 5763
# Without
$ llvm-profdata show default.profdata
Instrumentation level: IR entry_first = 0
Total functions: 183212
Maximum function count: 52034
Maximum internal block count: 5766
```
The slight difference in counts seem to be mostly from FileSystem and
Map functions and the difference in the number of instrumented functions
seems to come from missing debug info like destructors without source.
Reviewed By: kyulee
Differential Revision: https://reviews.llvm.org/D116051
This patch adds support to read all the PT_NOTE segments in the
executable to find the binary ids. Previously, it was only reading
the first PT_NOTE segment, and this was missing the cases where
binary id is in the following segments. As a result, binary-id.c
and binary-id-padding.c test were failing in the following cases:
1) sanitizer-x86_64-linux bot
https://lab.llvm.org/staging/#/builders/97
2) OpenSuse Tumbleweed
https://github.com/llvm/llvm-project/issues/52695
Differential Revision: https://reviews.llvm.org/D115830
This will allow linking in the callbacks directly instead of using PLT.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D116182
This option is per process anyway. I'd like to add more options, but
having them as parameters of __sanitizer_symbolize_code looks
inconvenient.
Reviewed By: browneee
Differential Revision: https://reviews.llvm.org/D116201
This will allow linking in the callbacks directly instead of using PLT.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D116182
After D116148 the memccpy gets optimized away and the expected
uninitialized memory access does not occur.
Make sure the call does not get optimized away.
The new tsan runtime has 2x more compact shadow.
Adjust shadow ranges accordingly.
Depends on D112603.
Reviewed By: vitalybuka, melver
Differential Revision: https://reviews.llvm.org/D113751