sequences, where we would occasionally determine (incorrectly) that
one standard conversion sequence was a proper subset of another when,
in fact, they contained completely incomparable conversions.
This change records the types in each step within a standard
conversion sequence, so that we can check the specific comparison
types to determine when one sequence is a proper subset of the
other. Fixes this testcase (thanks, Anders!), which was distilled from
PR6095 (also thanks to Anders).
llvm-svn: 94660
This solution relies on an O(n) scan of redeclarations, which means it might
scale poorly in crazy cases with tons of redeclarations brought in by a ton
of distinct associated namespaces. I believe that avoiding this
is not worth the common-case cost.
llvm-svn: 94530
incomplete type (or a pointer/reference to such).
The causes of this problem are different enough to justify a different "design"
for the diagnostic. Most notably, it doesn't give an operand index:
it's usually pretty obvious which operand is the problem, it adds a lot of
clutter to mention it, and the fix is usually in a different part of the file
anyway.
This is yet another diagnostic that should really have an analogue in the
non-overloaded case --- which should be much easier to write because of
the weaker space constraints.
llvm-svn: 94303
when checking for covariance. Added some fun test cases, fixes PR6110.
This felt obvious enough to just commit. ;] Let me know if anything needs
tweaking.
llvm-svn: 94173
CallExprs as those edges help cause a n^2 explosion in the number of
destructor calls. Other consumers, such as static analysis, that
would like to have more a more complete CFG can select the inclusion
of those edges as CFG build time.
This also fixes up the two compilation users of CFGs to be tolerant of
having or not having those edges. All catch code is assumed be to
live if we didn't generate the exceptional edges for CallExprs.
llvm-svn: 94074
to be considering user-defined conversions in the first place.
Doug, please review; I'm not sure what we should be doing if we see a real
ambiguity in selecting a copy constructor when otherwise suppressing
user-defined conversions.
Fixes PR6014.
llvm-svn: 93365
information to feed diagnostics instead of regenerating it. Much room for
improvement here, but fixes some unfortunate problems reporting on method calls.
llvm-svn: 93316
why the candidate is non-viable. There's a lot we can do to improve this, but
it's a good start. Further improvements should probably be integrated with the
bad-initialization reporting routines.
llvm-svn: 93277
fidelity with which we note them as functions/constructors and templates
thereof. Also will be helpful when reporting bad conversions (next).
llvm-svn: 93224
sequence. Lots of small relevant changes. Fixes some serious problems with
ambiguous conversions; also possibly improves associated diagnostics.
llvm-svn: 93214
not just the viable ones. This is reasonable because the most common use of
deleted functions is to exclude some implicit conversion during calls; users
therefore will want to figure out why some other options were excluded.
Started sorting overload results. Right now it just sorts by location in the
translation unit (after putting viable functions first), but we can do better than
that.
Changed bool OnlyViable parameter to PrintOverloadCandidates to an enum for better
self-documentation.
llvm-svn: 92990
suggestions follow recovery. Additionally, add a note to these
diagnostics which suggests a fix-it for changing the behavior to what
the user probably meant. Examples:
t.cpp:2:9: warning: & has lower precedence than ==; == will be evaluated first
[-Wparentheses]
if (i & j == k) {
^~~~~~~~
( )
t.cpp:2:9: note: place parentheses around the & expression to evaluate it first
if (i & j == k) {
^
( )
t.cpp:14:9: warning: using the result of an assignment as a condition
without
parentheses [-Wparentheses]
if (i = f()) {
~~^~~~~
( )
t.cpp:14:9: note: use '==' to turn this assignment into an equality
comparison
if (i = f()) {
^
==
llvm-svn: 92975
no viable overloads. Use a different message when the class provides
no operator[] overloads at all; use it for operator(), too.
Partially addresses PR 5900.
llvm-svn: 92894
result for a nested class whose first non-pure virtual member function
has an inline body. Previously, we were checking for the key function
before we had seen the (delayed) inline body.
llvm-svn: 92839
deterministic and work properly with templates. Once a class that
needs a vtable has been defined, we now do one if two things:
- If the class has no key function, we place the class on a list of
classes whose virtual functions will need to be "marked" at the
end of the translation unit. The delay until the end of the
translation unit is needed because we might see template
specializations of these virtual functions.
- If the class has a key function, we do nothing; when the key
function is defined, the class will be placed on the
aforementioned list.
At the end of the translation unit, we "mark" all of the virtual
functions of the classes on the list as used, possibly causing
template instantiation and other classes to be added to the
list. This gets LLVM's lib/Support/CommandLine.cpp compiling again.
llvm-svn: 92821
CV-qualifiers. Remove an error expectation from the 'good' set of const-cast
test cases. With this patch, the final non-template test case from PR5542
passes. (It's the same as the one already in const-cast.cpp.)
llvm-svn: 92257
more or less cv-qualified than another during implicit conversion and overload
resolution ([basic.type.qualifier] p5). Factors the logic out of template
deduction and into the ASTContext so it can be shared.
This fixes several aspects of PR5542, but not all of them.
llvm-svn: 92248
address resolution. This fixes PR5751.
Also, while we're here, remove logic from ADL which mistakenly included the
definition namespaces of overloaded and/or templated functions whose name or
address is used as an argument.
llvm-svn: 92245