This indicates an intrinsic parameter is required to be a constant,
and should not be replaced with a non-constant value.
Add the attribute to all AMDGPU and generic intrinsics that comments
indicate it should apply to. I scanned other target intrinsics, but I
don't see any obvious comments indicating which arguments are intended
to be only immediates.
This breaks one questionable testcase for the autoupgrade. I'm unclear
on whether the autoupgrade is supposed to really handle declarations
which were never valid. The verifier fails because the attributes now
refer to a parameter past the end of the argument list.
llvm-svn: 355981
This is meant to be used with clang's __builtin_dynamic_object_size.
When 'true' is passed to this parameter, the intrinsic has the
potential to be folded into instructions that will be evaluated
at run time. When 'false', the objectsize intrinsic behaviour is
unchanged.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56761
llvm-svn: 352664
Fixes PR31789 - When loop-vectorize tries to use these intrinsics for a
non-default address space pointer we fail with a "Calling a function with a
bad singature!" assertion. This patch solves this by adding the 'vector of
pointers' argument as an overloaded type which will determine the address
space.
Differential revision: https://reviews.llvm.org/D31490
llvm-svn: 302018
This adds a parameter to @llvm.objectsize that makes it return
conservative values if it's given null.
This fixes PR23277.
Differential Revision: https://reviews.llvm.org/D28494
llvm-svn: 298430
Summary:
The llvm.invariant.start and llvm.invariant.end intrinsics currently
support specifying invariant memory objects only in the default address
space.
With this change, these intrinsics are overloaded for any adddress space
for memory objects
and we can use these llvm invariant intrinsics in non-default address
spaces.
Example: llvm.invariant.start.p1i8(i64 4, i8 addrspace(1)* %ptr)
This overloaded intrinsic is needed for representing final or invariant
memory in managed languages.
Reviewers: apilipenko, reames
Subscribers: llvm-commits
llvm-svn: 276447
Summary:
The llvm.invariant.start and llvm.invariant.end intrinsics currently
support specifying invariant memory objects only in the default address space.
With this change, these intrinsics are overloaded for any adddress space for memory objects
and we can use these llvm invariant intrinsics in non-default address spaces.
Example: llvm.invariant.start.p1i8(i64 4, i8 addrspace(1)* %ptr)
This overloaded intrinsic is needed for representing final or invariant memory in managed languages.
Reviewers: tstellarAMD, reames, apilipenko
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22519
llvm-svn: 276316
This is a resubmittion of 263158 change after fixing the existing problem with intrinsics mangling (see LTO and intrinsics mangling llvm-dev thread for details).
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 274043
This is a resubmittion of 263158 change after fixing the existing problem with intrinsics mangling (see LTO and intrinsics mangling llvm-dev thread for details).
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 273892
This is a resubmittion of 263158 change.
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 266086
This is a cleanup patch for SSP support in LLVM. There is no functional change.
llvm.stackprotectorcheck is not needed, because SelectionDAG isn't
actually lowering it in SelectBasicBlock; rather, it adds check code in
FinishBasicBlock, ignoring the position where the intrinsic is inserted
(See FindSplitPointForStackProtector()).
llvm-svn: 265851
Summary: If TBAA is on an intrinsic and it gets upgraded and drops the TBAA we hit an odd assert. We should just upgrade the TBAA first because it doesn't have side-effects.
Reviewers: reames, apilipenko, manmanren
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18229
llvm-svn: 263673
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 263158
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Add RUN line for `verify-uselistorder` to every test in `test/Assembly`,
unless it's a negative check (assembler rejects it) or verification
fails.
There are three files that verification fails on (so I've left out the
RUN lines):
- 2002-08-22-DominanceProblem.ll
- ConstantExprFold.ll
- ConstantExprFoldCast.ll
This is part of PR5680.
llvm-svn: 214365
intrinsic syntax.
Now that this is explicitly covered, I plan to upgrade the existing test
suite to use an explicit immediate. Note that I plan to specify 'true'
in most places rather than the auto-upgraded value as that is the far
more common value to end up here as that is the value coming from GCC's
builtins. The only place I'm likely to put a 'false' in is when testing
x86 which actually has different instructions for the two variants.
llvm-svn: 146369