MachineFunctionProperties represents a set of properties that a MachineFunction
can have at particular points in time. Existing examples of this idea are
MachineRegisterInfo::isSSA() and MachineRegisterInfo::tracksLiveness() which
will eventually be switched to use this mechanism.
This change introduces the AllVRegsAllocated property; i.e. the property that
all virtual registers have been allocated and there are no VReg operands
left.
With this mechanism, passes can declare that they require a particular property
to be set, or that they set or clear properties by implementing e.g.
MachineFunctionPass::getRequiredProperties(). The MachineFunctionPass base class
verifies that the requirements are met, and handles the setting and clearing
based on the delcarations. Passes can also directly query and update the current
properties of the MF if they want to have conditional behavior.
This change annotates the target-independent post-regalloc passes; future
changes will also annotate target-specific ones.
Reviewers: qcolombet, hfinkel
Differential Revision: http://reviews.llvm.org/D18421
llvm-svn: 264593
When encountering instructions with regmasks, instead of cleaning up all the
elements in MaybeDeadCopies map, remove only the instructions erased. By keeping
more instruction in MaybeDeadCopies, this change will expose more dead copies
across instructions with regmasks.
llvm-svn: 264462
Summary:
Without this, this command
$ llvm-run llc -stop-after machine-cp -o - <( echo '' )
outputs an error, because we close stdout twice -- once when closing the
file opened for "-o", and again when closing outs().
Also clarify in the outs() definition that you can't ever call it if you
want to open your own raw_fd_ostream on stdout.
Reviewers: jroelofs, tstellarAMD
Subscribers: jholewinski, qcolombet, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D17422
llvm-svn: 261286
I originally reapplied this in 257550, but had to revert again due to bot
breakage. The only change in this version is to allow either the TypeSize
or the TypeAllocSize of the variable to be the one represented in debug info
(hopefully in the future we can figure out how to encode the difference).
Additionally, several bot failures following r257550, were due to
optimizer bugs now fixed in r257787 and r257795.
r257550 commit message was:
```
The follow extra changes were made to test cases:
Manually making the variable be the actual type instead of a pointer
to avoid pointer-size differences in generic code:
LLVM :: DebugInfo/Generic/2010-03-24-MemberFn.ll
LLVM :: DebugInfo/Generic/2010-04-06-NestedFnDbgInfo.ll
LLVM :: DebugInfo/Generic/2010-05-03-DisableFramePtr.ll
LLVM :: DebugInfo/Generic/varargs.ll
Delete sizing information from debug info for the same reason
(but the presence of the pointer was important to the test case):
LLVM :: DebugInfo/Generic/restrict.ll
LLVM :: DebugInfo/Generic/tu-composite.ll
LLVM :: Linker/type-unique-type-array-a.ll
LLVM :: Linker/type-unique-simple2.ll
Fixing an incorrect DW_OP_deref
LLVM :: DebugInfo/Generic/2010-05-03-OriginDIE.ll
Fixing a missing DW_OP_deref
LLVM :: DebugInfo/Generic/incorrect-variable-debugloc.ll
Additionally, clang should no longer complain during bootstrap should no
longer happen after r257534.
The original commit message was:
``
Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
``
```
llvm-svn: 257850
The follow extra changes were made to test cases:
Manually making the variable be the actual type instead of a pointer
to avoid pointer-size differences in generic code:
LLVM :: DebugInfo/Generic/2010-03-24-MemberFn.ll
LLVM :: DebugInfo/Generic/2010-04-06-NestedFnDbgInfo.ll
LLVM :: DebugInfo/Generic/2010-05-03-DisableFramePtr.ll
LLVM :: DebugInfo/Generic/varargs.ll
Delete sizing information from debug info for the same reason
(but the presence of the pointer was important to the test case):
LLVM :: DebugInfo/Generic/restrict.ll
LLVM :: DebugInfo/Generic/tu-composite.ll
LLVM :: Linker/type-unique-type-array-a.ll
LLVM :: Linker/type-unique-simple2.ll
Fixing an incorrect DW_OP_deref
LLVM :: DebugInfo/Generic/2010-05-03-OriginDIE.ll
Fixing a missing DW_OP_deref
LLVM :: DebugInfo/Generic/incorrect-variable-debugloc.ll
Additionally, clang should no longer complain during bootstrap should no
longer happen after r257534.
The original commit message was:
```
Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
```
llvm-svn: 257550
Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
Reviewers: aprantl
Differential Revision: http://reviews.llvm.org/D14276
llvm-svn: 257105
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254377
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
llvm-svn: 254366
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254348
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
When optimization is disabled, edge weights that are stored in MBB won't be used so that we don't have to store them. Currently, this is done by adding successors with default weight 0, and if all successors have default weights, the weight list will be empty. But that the weight list is empty doesn't mean disabled optimization (as is stated several times in MachineBasicBlock.cpp): it may also mean all successors just have default weights.
We should discourage using default weights when adding successors, because it is very easy for users to forget update the correct edge weights instead of using default ones (one exception is that the MBB only has one successor). In order to detect such usages, it is better to differentiate using default weights from the case when optimizations is disabled.
In this patch, a new interface addSuccessorWithoutWeight(MBB*) is created for when optimization is disabled. In this case, MBB will try to maintain an empty weight list, but it cannot guarantee this as for many uses of addSuccessor() whether optimization is disabled or not is not checked. But it can guarantee that if optimization is enabled, then the weight list always has the same size of the successor list.
Differential revision: http://reviews.llvm.org/D13963
llvm-svn: 251429
Summary:
The -mcpu=mips16 option caused the Integrated Assembler to crash because
it couldn't figure out the architecture revision number to write to the
.MIPS.abiflags section. This CPU definition has been removed because, like
microMIPS, MIPS16 is an ASE to a base architecture.
Reviewers: vkalintiris
Subscribers: rkotler, llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D13656
llvm-svn: 250407
order.
The implicit register verifier in the MIR parser should only check if the
instruction's default implicit operands are present in the instruction. It
should not check the order in which they occur.
llvm-svn: 247283
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327
This commit modifies the serialization syntax so that the global IR values in
machine memory operands use the global value '@<name>' syntax instead of the
current '%ir.<name>' syntax.
The unnamed global IR values are handled by this commit as well, as the
existing global value parsing method can parse the unnamed globals already.
llvm-svn: 245527
The global IR values in machine memory operands should use the global value
'@<name>' syntax instead of the current '%ir.<name>' syntax.
However, the global value call entry pseudo source values use the global value
syntax already. Therefore, the syntax for the call entry pseudo source values
has to be changed so that the global values and call entry global value PSVs
can be parsed without ambiguities.
llvm-svn: 245526
This commit serializes the machine instruction's register operand ties.
The ties are printed out only when the instructon has register ties that are
different from the ties that are specified in the instruction's description.
llvm-svn: 245482
The defined registers are already serialized - they are represented by placing
them before the '=' in a machine instruction. However, certain instructions like
INLINEASM can have defined register operands after the '=', so this commit
introduces the 'def' register flag for such operands.
llvm-svn: 245480
This commit adds support for bit mask target flag serialization to the MIR
printer and the MIR parser. It also adds support for the machine operand's
target flag serialization to the AArch64 target.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 245383
This commit modifies the way the machine basic blocks are serialized - now the
machine basic blocks are serialized using a custom syntax instead of relying on
YAML primitives. Instead of using YAML mappings to represent the individual
machine basic blocks in a machine function's body, the new syntax uses a single
YAML block scalar which contains all of the machine basic blocks and
instructions for that function.
This is an example of a function's body that uses the old syntax:
body:
- id: 0
name: entry
instructions:
- '%eax = MOV32r0 implicit-def %eflags'
- 'RETQ %eax'
...
The same body is now written like this:
body: |
bb.0.entry:
%eax = MOV32r0 implicit-def %eflags
RETQ %eax
...
This syntax change is motivated by the fact that the bundled machine
instructions didn't map that well to the old syntax which was using a single
YAML sequence to store all of the machine instructions in a block. The bundled
machine instructions internally use flags like BundledPred and BundledSucc to
determine the bundles, and serializing them as MI flags using the old syntax
would have had a negative impact on the readability and the ease of editing
for MIR files. The new syntax allows me to serialize the bundled machine
instructions using a block construct without relying on the internal flags,
for example:
BUNDLE implicit-def dead %itstate, implicit-def %s1 ... {
t2IT 1, 24, implicit-def %itstate
%s1 = VMOVS killed %s0, 1, killed %cpsr, implicit killed %itstate
}
This commit also converts the MIR testcases to the new syntax. I developed
a script that can convert from the old syntax to the new one. I will post the
script on the llvm-commits mailing list in the thread for this commit.
llvm-svn: 244982
This commit serializes the UsedPhysRegMask register mask from the machine
register information class. The mask is serialized as an inverted
'calleeSavedRegisters' mask to keep the output minimal.
This commit also allows the MIR parser to infer this mask from the register
mask operands if the machine function doesn't specify it.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 244548
The block address machine operands can reference IR blocks in other functions.
This commit fixes a bug where the references to unnamed IR blocks in other
functions weren't serialized correctly.
llvm-svn: 244299
This commit implements the initial serialization of the machine operand target
flags. It extends the 'TargetInstrInfo' class to add two new methods that help
to provide text based serialization for the target flags.
This commit can serialize only the X86 target flags, and the target flags for
the other targets will be serialized in the follow-up commits.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 244185
This commit serializes the offset for the following operands: target index,
global address, external symbol, constant pool index, and block address.
llvm-svn: 244157
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
This commit serializes the references from the machine basic blocks to the
unnamed basic blocks.
This commit adds a new attribute to the machine basic block's YAML mapping
called 'ir-block'. This attribute contains the actual reference to the
basic block.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 243340
This commit serializes the callee saved information from the class
'MachineFrameInfo'. This commit extends the YAML mappings for the fixed and
the ordinary stack objects and adds an optional 'callee-saved-register'
attribute. This attribute is used to serialize the callee save information.
llvm-svn: 243173
This commit serializes the virtual register allocations hints of type 0.
These hints specify the preferred physical registers for allocations.
llvm-svn: 243156
This commit adds the liveins and successors properties to machine basic blocks
in some of the MIR tests to ensure that the tests will pass when the MIR parser
will run the machine verifier after initializing a machine function.
llvm-svn: 243124
This commit moves and transforms the generic test
'CodeGen/MIR/successor-basic-blocks.mir' into an X86 specific test
'CodeGen/MIR/X86/successor-basic-blocks.mir'. This change is required in order
to enable the machine verifier for the MIR parser, as the machine verifier
verifies that the machine basic blocks contain instructions that actually
determine the machine basic block successors.
llvm-svn: 243123
This commit begins serialization of the CFI index machine operands by
serializing one kind of CFI instruction - the .cfi_def_cfa_offset instruction.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 242845
This commit implements the initial serialization of machine constant pools and
the constant pool index machine operands. The constant pool is serialized using
a YAML sequence of YAML mappings that represent the constant values.
The target-specific constant pool items aren't serialized by this commit.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 242707
This commit extends the machine instruction lexer and implements support for
the quoted global value tokens. With this change the syntax for the global value
identifier tokens becomes identical to the syntax for the global identifier
tokens from the LLVM's assembly language.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 242702
This commit modifies the machine instruction lexer so that it now accepts the
'$' characters in identifier tokens.
This change makes the syntax for unquoted global value tokens consistent with
the syntax for the global idenfitier tokens in the LLVM's assembly language.
llvm-svn: 242584
The testcase failed on non X86 targets, because I forgot to pass the
'-march=x86-64' option into llc for one of the X86 specific tests.
llvm-svn: 242370
The jump table info is serialized using a YAML mapping that contains its kind
and a YAML sequence of jump table entries. A jump table entry is a YAML mapping
that has an ID and an inline YAML sequence of machine basic block references.
The testcase 'CodeGen/MIR/X86/jump-table-info.mir' doesn't have any instructions
because one of them contains a jump table index operand. The jump table index
operands will be serialized in a follow up patch, and the appropriate
instructions will be added to this testcase.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 242357
This commit serializes the references to the named LLVM alloca instructions from
the stack objects in the machine frame info. This commit adds a field 'Name' to
the struct 'yaml::MachineStackObject'. This new field is used to store the name
of the alloca instruction when the alloca is present and when it has a name.
llvm-svn: 242339
This commit serializes the fixed stack objects, including fixed spill slots.
The fixed stack objects are serialized using a YAML sequence of YAML inline
mappings. Each mapping has the object's ID, type, size, offset, and alignment.
The objects that aren't spill slots also serialize the isImmutable and isAliased
flags.
The fixed stack objects are a part of the machine function's YAML mapping.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 242045
This commit implements the initial serialization of stack objects from the
MachineFrameInfo class. It can only serialize the ordinary stack objects
(including ordinary spill slots), but it doesn't serialize variable sized or
fixed stack objects yet.
The stack objects are serialized using a YAML sequence of YAML inline mappings.
Each mapping has the object's ID, type, size, offset and alignment. The stack
objects are a part of machine function's YAML mapping.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 241922
The virtual registers are serialized using a YAML sequence of YAML inline
mappings. Each mapping has the id of the virtual register and the register
class.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10981
llvm-svn: 241868
This commit adds a new error which is reported when the MIR Parser encounters
a machine function without any machine basic blocks. The machine verifier
expects that the machine functions have at least one MBB, and this error will
prevent machine functions without MBBs from reaching the machine verifier and
crashing with an assertion.
llvm-svn: 241862
This commit serializes the 13 scalar boolean and integer attributes from the
MachineFrameInfo class: IsFrameAddressTaken, IsReturnAddressTaken, HasStackMap,
HasPatchPoint, StackSize, OffsetAdjustment, MaxAlignment, AdjustsStack,
HasCalls, MaxCallFrameSize, HasOpaqueSPAdjustment, HasVAStart, and
HasMustTailInVarArgFunc. These attributes are serialized as part
of the frameInfo YAML mapping, which itself is a part of the machine function's
YAML mapping.
llvm-svn: 241844
This commit changes the type of the field 'Name' in the struct
'yaml::MachineBasicBlock' from 'std::string' to 'yaml::StringValue'. This change
allows the MIR parser to report errors related to the MBB name with the proper
source locations.
llvm-svn: 241718
This commit verifies that the parsed machine instructions contain the implicit
register operands as specified by the MCInstrDesc. Variadic and call
instructions aren't verified.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10781
llvm-svn: 241537
This commit serializes the implicit flag for the register machine operands. It
introduces two new keywords into the machine instruction syntax: 'implicit' and
'implicit-def'. The 'implicit' keyword is used for the implicit register
operands, and the 'implicit-def' keyword is used for the register operands that
have both the implicit and the define flags set.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10709
llvm-svn: 241519
This commit implements serialization of the machine basic block successors. It
uses a YAML flow sequence that contains strings that have the MBB references.
The MBB references in those strings use the same syntax as the MBB machine
operands in the machine instruction strings.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10699
llvm-svn: 241093
This commit implements serialization of the register mask machine
operands. This commit serializes only the call preserved register
masks that are defined by a target, it doesn't serialize arbitrary
register masks.
This commit also extends the TargetRegisterInfo class and TableGen so that
the users of TRI can get the list of all the call preserved register masks and
their names.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10673
llvm-svn: 240966
This commit serializes the global address machine operands.
This commit doesn't serialize the operand's offset and target
flags, it serializes only the global value reference.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10671
llvm-svn: 240851
This commit serializes machine basic block operands. The
machine basic block operands use the following syntax:
%bb.<id>[.<name>]
This commit also modifies the YAML representation for the
machine basic blocks - a new, required field 'id' is added
to the MBB YAML mapping.
The id is used to resolve the MBB references to the
actual MBBs. And while the name of the MBB can be
included in a MBB reference, this name isn't used to
resolve MBB references - as it's possible that multiple
MBBs will reference the same BB and thus they will have the
same name. If the name is specified, the parser will verify
that it is equal to the name of the MBB with the specified id.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10608
llvm-svn: 240792
This commit serializes the 3 scalar boolean attributes from the
MachineRegisterInfo class: IsSSA, TracksRegLiveness, and
TracksSubRegLiveness. These attributes are serialized as part
of the machine function YAML mapping.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10618
llvm-svn: 240579
This commit serializes the null register machine operands.
It uses the '_' keyword to represent them, but the parser
also allows the '%noreg' named register syntax.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10580
llvm-svn: 240558
This commit translates the source locations for MIParser diagnostics from
the locations in the machine instruction string to the locations in the
MIR file.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10574
llvm-svn: 240474
This commit introduces functionality that's used to serialize machine operands.
Only the physical register operands are serialized by this commit.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10525
llvm-svn: 240425
This commit adds a function that tokenizes the string containing
the machine instruction. This commit also adds a struct called
'MIToken' which is used to represent the lexer's tokens.
Reviewers: Sean Silva
Differential Revision: http://reviews.llvm.org/D10521
llvm-svn: 240323
This commit implements initial machine instruction serialization. It
serializes machine instruction names. The instructions are represented
using a YAML sequence of string literals and are a part of machine
basic block YAML mapping.
This commit introduces a class called 'MIParser' which will be used to
parse the machine instructions and operands.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10481
llvm-svn: 240295
This commit implements the initial serialization of machine basic blocks in a
machine function. Only the simple, scalar MBB attributes are serialized. The
reference to LLVM IR's basic block is preserved when that basic block has a name.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10465
llvm-svn: 240145
The test 'llvm/test/CodeGen/MIR/machine-function.mir' was disabled on
x86 msc18 in r239805 as it failed. My commit r240054 have fixed the
problem, so this commit reverts the commit that disabled the test as
it should pass now.
llvm-svn: 240074
This commit reports an error when a machine function from a MIR file that contains
LLVM IR can't find a function with the same name in the loaded LLVM IR module.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10468
llvm-svn: 239831
This commit serializes the simple, scalar attributes from the
'MachineFunction' class.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10449
llvm-svn: 239790
This commit creates a dummy LLVM IR function with one basic block and an unreachable
instruction for each parsed machine function when the MIR file doesn't have LLVM IR.
This change is required as the machine function analysis pass creates machine
functions only for the functions that are defined in the current LLVM module.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10135
llvm-svn: 239778
This commit reports an error when the MIR parser encounters a machine
function with the name that is the same as the name of a different
machine function.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10130
llvm-svn: 239774
This commit connects the machine function analysis pass (which creates machine
functions) to the MIR parser, which will initialize the machine functions
with the state from the MIR file and reconstruct the machine IR.
This commit introduces a new interface called 'MachineFunctionInitializer',
which can be used to provide custom initialization for the machine functions.
This commit also introduces a new diagnostic class called
'DiagnosticInfoMIRParser' which is used for MIR parsing errors.
This commit modifies the default diagnostic handling in LLVMContext - now the
the diagnostics are printed directly into llvm::errs() so that the MIR parsing
errors can be printed with colours.
Reviewers: Justin Bogner
Differential Revision: http://reviews.llvm.org/D9928
llvm-svn: 239753
This commit translates the line and column numbers for LLVM IR
errors from the numbers in the YAML block scalar to the numbers
in the MIR file so that the MIRParser users can report LLVM IR
errors with the correct line and column numbers.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10108
llvm-svn: 238576
This commit introduces a serializable structure called
'llvm::yaml::MachineFunction' that stores the machine
function's name. This structure will mirror the machine
function's state in the future.
This commit prints machine functions as YAML documents
containing a YAML mapping that stores the state of a machine
function. This commit also parses the YAML documents
that contain the machine functions.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D9841
llvm-svn: 238519
This commit a 3rd attempt at comitting the initial MIR serialization patch.
The first commit (r237708) was reverted in 237730. Then the second commit
(r237954) was reverted in r238007, as the MIR library under CodeGen caused
a circular dependency where the CodeGen library depended on MIR and MIR
library depended on CodeGen.
This commit has fixed the dependencies between CodeGen and MIR by
reorganizing the MIR serialization code - the code that prints out
MIR has been moved to CodeGen, and the MIR library has been renamed
to MIRParser. Now the CodeGen library doesn't depend on the
MIRParser library, thus the circular dependency no longer exists.
--Original Commit Message--
MIR Serialization: print and parse LLVM IR using MIR format.
This commit is the initial commit for the MIR serialization project.
It creates a new library under CodeGen called 'MIR'. This new
library adds a new machine function pass that prints out the LLVM IR
using the MIR format. This pass is then added as a last pass when a
'stop-after' option is used in llc. The new library adds the initial
functionality for parsing of MIR files as well. This commit also
extends the llc tool so that it can recognize and parse MIR input files.
Reviewers: Duncan P. N. Exon Smith, Matthias Braun, Philip Reames
Differential Revision: http://reviews.llvm.org/D9616
llvm-svn: 238341
This commit is a 2nd attempt at committing the initial MIR serialization patch.
The first commit (r237708) made the incremental buildbots unstable and was
reverted in r237730. The original commit didn't add a terminating null
character to the LLVM IR source which was passed to LLParser, and this
sometimes caused the test 'llvmIR.mir' to fail with a parsing error because
the LLVM IR source didn't have a null character immediately after the end
and thus LLLexer encountered some garbage characters that ultimately caused
the error.
This commit also includes the other test fixes I committed in
r237712 (llc path fix) and r237723 (remove target triple) which
also got reverted in r237730.
--Original Commit Message--
MIR Serialization: print and parse LLVM IR using MIR format.
This commit is the initial commit for the MIR serialization project.
It creates a new library under CodeGen called 'MIR'. This new
library adds a new machine function pass that prints out the LLVM IR
using the MIR format. This pass is then added as a last pass when a
'stop-after' option is used in llc. The new library adds the initial
functionality for parsing of MIR files as well. This commit also
extends the llc tool so that it can recognize and parse MIR input files.
Reviewers: Duncan P. N. Exon Smith, Matthias Braun, Philip Reames
Differential Revision: http://reviews.llvm.org/D9616
llvm-svn: 237954
The incremental buildbots entered a pass-fail cycle where during the fail
cycle one of the tests from this commit fails for an unknown reason. I
have reverted this commit and will investigate the cause of this problem.
llvm-svn: 237730
This commit is the initial commit for the MIR serialization project.
It creates a new library under CodeGen called 'MIR'. This new
library adds a new machine function pass that prints out the LLVM IR
using the MIR format. This pass is then added as a last pass when a
'stop-after' option is used in llc. The new library adds the initial
functionality for parsing of MIR files as well. This commit also
extends the llc tool so that it can recognize and parse MIR input files.
Reviewers: Duncan P. N. Exon Smith, Matthias Braun, Philip Reames
Differential Revision: http://reviews.llvm.org/D9616
llvm-svn: 237708