Print a little snippet before exiting when passed unrecognized
arguments. The goal is twofold:
- Point users to lldb --help.
- Make it clear that we exited the debugger.
Summary:
Long long ago system_libs was appended to LLDB_SYSTEM_LIBS in
cmake/LLDBDependencies.cmake. After that file was removed, system_libs
is orphaned.
Currently the only user is source/Utility. Move the logic there and
remove system_libs.
Subscribers: mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D80253
Summary:
This changes allows to disable or use customized libxml2 for lldb.
1. Removes redundant include_directories. The one in LLDBConfig.cmake should be enough.
2. Link to ${LIBXML2_LIBRARIES} if xml2 is enabled.
Subscribers: mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D80257
Summary:
No need to generate inlined OpenMP region for variables captured in
lambdas or block decls, only for implicitly captured variables in the
OpenMP region.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, cfe-commits, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D79966
The subview semantics changes recently to allow for more natural
representation of constant offsets and strides. The legalization of
subview op for lowering to SPIR-V needs to account for this.
Also change the linearization to use the strides from the affine map
of a memref.
Differential Revision: https://reviews.llvm.org/D80270
Tests for `std::system_error` constructor marked as slightly non-portable.
One (but not the only one) reason for such non-portability is that these
tests assume the default locale to be set to "C" (or "POSIX").
However, the default locale for the process depends on OS and
environment. This patch adds explicit setting of the correct
locale expected by the tests.
Thanks to Andrey Maksimov for the patch.
Differential Revision: https://reviews.llvm.org/D72456
This change removes both the member function swap and the free function
overload of swap for std::span. While swap is a member and overloaded
for every other container in the standard library [1], it is neither a
member function nor a free function overload for std::span [2].
Thus the corresponding implementation should be removed.
[1] https://eel.is/c++draft/libraryindex#:swap
[2] https://eel.is/c++draft/span.overview
Differential Revision: https://reviews.llvm.org/D69827
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
This makes it possible to instrument the call for the reproducers. This
fixes TestStructuredDataAPI.py with reproducer replay.
Differential revision: https://reviews.llvm.org/D80312
Summary:
Asm goto is not supported by SLH. Warn if an instance of asm goto is detected
while SLH is enabled.
Test included.
Reviewed By: jyu2
Differential Revision: https://reviews.llvm.org/D79743
Summary:
Rename 'i' to 'I'.
Factor out the optional field handling to getOptionalVal().
Split out of D79951.
Reviewers: davidxl
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80230
There appears to be consensus in D80165 that this is the desired
behavior and I personally agree.
Differential revision: https://reviews.llvm.org/D80226
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
Add reproducer support to PlatformRemoteGDBServer. The logic is
essentially the same as for ProcessGDBRemote. During capture we record
the GDB packets and during replay we connect to a replay server.
This fixes TestPlatformClient.py when run form a reproducer.
Differential Revision: https://reviews.llvm.org/D80224
Summary:
Previously, the only support partial lowering from vector transfers to SCF was
going through loops. This requires a dedicated allocation and extra memory
roundtrips because LLVM aggregates cannot be indexed dynamically (for more
details see the [deep-dive](https://mlir.llvm.org/docs/Dialects/Vector/#deeperdive)).
This revision allows specifying full unrolling which removes this additional roundtrip.
This should be used carefully though because full unrolling will spill, negating the
benefits of removing the interim alloc in the first place.
Proper heuristics are left for a later time.
Differential Revision: https://reviews.llvm.org/D80100
The SingleBlockImplicitTerminator op trait provides a function
`ensureRegionTerminator` that injects an appropriate terminator into the block
if necessary, which is used during operation constructing and parsing.
Currently, this function directly modifies the IR using low-level APIs on
Operation and Block. If this function is called from a conversion pattern,
these manipulations are not reflected in the ConversionPatternRewriter and thus
cannot be undone or, worse, lead to tricky memory errors and malformed IR.
Change `ensureRegionTerminator` to take an instance of `OpBuilder` instead of
`Builder`, and use it to construct the block and the terminator when required.
Maintain overloads taking an instance of `Builder` and creating a simple
`OpBuilder` to use in parsers, which don't have an `OpBuilder` and cannot
interact with the dialect conversion mechanism. This change was one of the
reasons to make `<OpTy>::build` accept an `OpBuilder`.
Differential Revision: https://reviews.llvm.org/D80138
Originally, the SCFToStandard conversion only declared Ops from the Standard
dialect as legal after conversion. This is undesirable as it would fail the
conversion if the SCF ops contained ops from any other dialect. Furthermore,
this would be problematic for progressive lowering of `scf.parallel` to
`scf.for` after `ensureRegionTerminator` is made aware of the pattern rewriting
infrastructure because it creates temporary `scf.yield` operations declared
illegal. Change the legalization target to declare any op other than `scf.for`,
`scf.if` and `scf.parallel` legal.
Differential Revision: https://reviews.llvm.org/D80137
Multiple places in the code base were erasing Blocks or operations in them
using in-place modifications (`Block::erase` or `Block::clear`) unknown to
ConversionPatternRewriter. These operations could not be undone if the pattern
failed and could lead to inconsistent in-memory state of the IR with dangling
pointers. Use `ConversionPatternRewriter::eraseOp` and `::eraseBlock` instead.
Differential Revision: https://reviews.llvm.org/D80136
PatternRewriter has support for erasing a Block from its parent region, but
this feature has not been implemented for ConversionPatternRewriter that needs
to keep track of and be able to undo block actions. Introduce support for
undoing block erasure in the ConversionPatternRewriter by marking all the ops
it contains for erasure and by detaching the block from its parent region. The
detached block is stored in the action description and is not actually deleted
until the rewrites are applied.
Differential Revision: https://reviews.llvm.org/D80135
Dialect conversion infrastructure may roll back op creation by erasing the
operations in the reverse order of their creation. While this guarantees uses
of values will be deleted before their definitions, this does not guarantee
that a parent operation will not be deleted before its child. (This may happen
in case of block inlining or if child operations, such as terminators, are
created in the parent's `build` function before the parent itself.) Handle the
parent/child relationship between ops by removing all child ops from the blocks
before erasing the parent. The child ops remain live, detached from a block,
and will be safely destroyed in their turn, which may come later than that of
the parent.
Differential Revision: https://reviews.llvm.org/D80134
When creating temporary `scf.for` loops in `toy.print` lowering, the block
insertion point was erronously set up to the beginning of the block rather than
to its end, contradicting the comment just above the insertion point change.
The code was nevertheless operational because `scf.for` was setting up its
`scf.yield` terminator in an opaque to the pattern rewriting infrastructure
way. Now that it is about to change, the problem would have been exposed and
lead to conversion failures.
Differential Revision: https://reviews.llvm.org/D80133
Summary:
This revision refactors the Linalg tiling pass to be written as pattern applications and retires the use of the folder in Linalg tiling.
In the early days, tiling was written as a pass that would create (partially) folded and canonicalized operations on the fly for better composability.
As this evolves towards composition of patterns, the pass-specific folder is counter-productive and is retired.
The tiling options struct evolves to take a tile size creation function which allows materializing tile sizes on the fly (in particular constant tile sizes). This plays better with folding and DCE.
With the folder going away in Tiling, the check on whether subviews are the same in linalg fusion needs to be more robust. This revision also implements such a check.
In the current form, there are still some canonicalizations missing due to AffineMin/Max ops fed by scf::ForOp. These will be improved at a later time.
Differential Revision: https://reviews.llvm.org/D80267
Fixes "Use of uninitialized value $ScanView in exec" error on systems
with scan-view executable not located in the expected place.
Patch by Oliver Tušla!
Differential Revision: https://reviews.llvm.org/D77880