In default pipelines the ModuleInlinerWrapperPass is adding the
InlinerPass to the pipeline twice, once due to MandatoryFirst (passing
true in the ctor) and then a second time with false as argument.
To make it possible to bisect and reduce opt test cases for this
part of the pipeline we need to be able to choose between the two
different variants of the InlinerPass when running opt. This patch is
changing 'inline' to a CGSCC_PASS_WITH_PARAMS in the PassRegistry,
making it possible run opt with both -passes=cgscc(inline) and
-passes=cgscc(inline<only-mandatory>).
Reviewed By: aeubanks, mtrofin
Differential Revision: https://reviews.llvm.org/D109877
Change the asan-module pass into a MODULE_PASS_WITH_PARAMS in the
pass registry, and add a single parameter called 'kernel' that
can be set instead of having a special pass name 'kasan-module'
to trigger that special pass config.
Main reason is to make sure that we have a unique mapping from
ClassName to PassName in the new passmanager framework, making it
possible to correctly identify the passes when dealing with options
such as -print-after and -print-pipeline-passes.
This is a follow-up to D105006 and D105007.
Split ThreadSanitizerPass into ThreadSanitizerPass (as a function
pass) and ModuleThreadSanitizerPass (as a module pass).
Main reason is to make sure that we have a unique mapping from
ClassName to PassName in the new passmanager framework, making it
possible to correctly identify the passes when dealing with options
such as -print-after and -print-pipeline-passes.
This is a follow-up to D105006 and D105007.
Split MemorySanitizerPass into MemorySanitizerPass (as a function
pass) and ModuleMemorySanitizerPass (as a module pass).
Main reason is to make sure that we have a unique mapping from
ClassName to PassName in the new passmanager framework, making it
possible to correctly identify the passes when dealing with options
such as -print-after and -print-pipeline-passes.
This is a follow-up to D105006 and D105007.
A couple of passes that are parameterized in new-PM used different
pass names (in cmd line interface) while using the same pass class
name. This patch updates the PassRegistry to model pass parameters
more properly using PASS_WITH_PARAMS.
Reason for the change is to ensure that we have a 1-1 mapping
between class name and pass name (when disregarding the params).
With a 1-1 mapping it is more obvious which pass name to use in
options such as -debug-only, -print-after etc.
The opt -passes syntax is changed for the following passes:
early-cse-memssa => early-cse<memssa>
post-inline-ee-instrument => ee-instrument<post-inline>
loop-extract-single => loop-extract<single>
lower-matrix-intrinsics-minimal => lower-matrix-intrinsics<minimal>
This patch is not updating pass names in docs/Passes.rst. Not quite
sure what the status is for that document (e.g. when it comes to
listing pass paramters). It is only loop-extract-single that is
mentioned in Passes.rst today, out of the passes mentioned above.
Differential Revision: https://reviews.llvm.org/D108362
Refactored implementation of AddressSanitizerPass and
HWAddressSanitizerPass to use pass options similar to passes like
MemorySanitizerPass. This makes sure that there is a single mapping
from class name to pass name (needed by D108298), and options like
-debug-only and -print-after makes a bit more sense when (despite
that it is the unparameterized pass name that should be used in those
options).
A result of the above is that some pass names are removed in favor
of the parameterized versions:
- "khwasan" is now "hwasan<kernel;recover>"
- "kasan" is now "asan<kernel>"
- "kmsan" is now "msan<kernel>"
Differential Revision: https://reviews.llvm.org/D105007
The current JumpThreading pass does not jump thread loops since it can
result in irreducible control flow that harms other optimizations. This
prevents switch statements inside a loop from being optimized to use
unconditional branches.
This code pattern occurs in the core_state_transition function of
Coremark. The state machine can be implemented manually with goto
statements resulting in a large runtime improvement, and this transform
makes the switch implementation match the goto version in performance.
This patch specifically targets switch statements inside a loop that
have the opportunity to be threaded. Once it identifies an opportunity,
it creates new paths that branch directly to the correct code block.
For example, the left CFG could be transformed to the right CFG:
```
sw.bb sw.bb
/ | \ / | \
case1 case2 case3 case1 case2 case3
\ | / / | \
latch.bb latch.2 latch.3 latch.1
br sw.bb / | \
sw.bb.2 sw.bb.3 sw.bb.1
br case2 br case3 br case1
```
Co-author: Justin Kreiner @jkreiner
Co-author: Ehsan Amiri @amehsan
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D99205
This patch adds a new pass called LNICM which is a LoopNest version of LICM and a test case to show how LNICM works.
Basically, LNICM only hoists invariants out of loop nest (not a loop) to keep/make perfect loop nest. This enables later optimizations that require perfect loop nest.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D104180
To help with debugging non-trivial unswitching issues.
Don't care about the legacy pass, nobody is using it.
If a pass's string params are empty (e.g. "simple-loop-unswitch"), don't
default to the empty constructor for the pass params. We should still
let the parser take care of it in case the parser has its own defaults.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D105933
It is confusing to have two ways of specifying the same pass
('simple-loop-unswitch' and 'unswitch'). This patch replaces
'unswitch' by 'simple-loop-unswitch' to get a unique identifier.
Using 'simple-loop-unswitch' instead of 'unswitch' also has the
advantage of matching how the pass is named in DEBUG_TYPE etc. So
this makes it a bit more consistent how we refer to the pass in
options such as -passes, -print-after and -debug-only.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D105628
There was an alias between 'simplifycfg' and 'simplify-cfg' in the
PassRegistry. That was the original reason for this patch, which
effectively removes the alias.
This patch also replaces all occurrances of 'simplify-cfg'
by 'simplifycfg'. Reason for choosing that form for the name is
that it matches the DEBUG_TYPE for the pass, and the legacy PM name
and also how it is spelled out in other passes such as
'loop-simplifycfg', and in other options such as
'simplifycfg-merge-cond-stores'.
I for some reason the name should be changed to 'simplify-cfg' in
the future, then I think such a renaming should be more widely done
and not only impacting the PassRegistry.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D105627
To support options like -print-before=<pass> and -print-after=<pass>
the PassBuilder will register PassInstrumentation callbacks as well
as a mapping between internal pass class names and the pass names
used in those options (and other cmd line interfaces). But for
some reason all the passes that takes options where missing in those
maps, so for example "-print-after=loop-vectorize" didn't work.
This patch will add the missing entries by also taking care of
function and loop passes with params when setting up the class to
pass name maps.
One might notice that even with this patch it might be tricky to
know what pass name to use in options such as -print-after. This
because there only is a single mapping from class name to pass name,
while the PassRegistry currently is a bit messy as it sometimes
reuses the same class for different pass names (without using the
"pass with params" scheme, or the pass-name<variant> syntax).
It gets extra messy in some situations. For example the
MemorySanitizerPass can run like this (with debug and print-after)
opt -passes='kmsan' -print-after=msan-module -debug-only=msan
The 'kmsan' alias for 'msan<kernel>' is just confusing as one might
think that 'kmsan' is a separate pass (but the DEBUG_TYPE is still
just 'msan'). And since the module pass version of the pass adds
a mapping from 'MemorySanitizerPass' to 'msan-module' one need to
use 'msan-module' in the print-before and print-after options.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D105006
Addition of this pass has been botched.
There is no particular reason why it had to be sold as an inseparable part
of new-pm transition. It was added when old-pm was still the default,
and very *very* few users were actually tracking new-pm,
so it's effects weren't measured.
Which means, some of the turnoil of the new-pm transition
are actually likely regressions due to this pass.
Likewise, there has been a number of post-commit feedback
(post new-pm switch), namely
* https://reviews.llvm.org/D37467#2787157 (regresses HW-loops)
* https://reviews.llvm.org/D37467#2787259 (should not be in middle-end, should run after LSR, not before)
* https://reviews.llvm.org/D95789 (an attempt to fix bad loop backedge metadata)
and in the half year past, the pass authors (google) still haven't found time to respond to any of that.
Hereby it is proposed to backout the pass from the pipeline,
until someone who cares about it can address the issues reported,
and properly start the process of adding a new pass into the pipeline,
with proper performance evaluation.
Furthermore, neither google nor facebook reports any perf changes
from this change, so i'm dropping the pass completely.
It can always be re-reverted should/if anyone want to pick it up again.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D104099
This adds a function specialization pass to LLVM. Constant parameters
like function pointers and constant globals are propagated to the callee by
specializing the function.
This is a first version with a number of limitations:
- The pass is off by default, so needs to be enabled on the command line,
- It does not handle specialization of recursive functions,
- It does not yet handle constants and constant ranges,
- Only 1 argument per function is specialised,
- The cost-model could be further looked into, and perhaps related,
- We are not yet caching analysis results.
This is based on earlier work by Matthew Simpson (D36432) and Vinay Madhusudan.
More recently this was also discussed on the list, see:
https://lists.llvm.org/pipermail/llvm-dev/2021-March/149380.html.
The motivation for this work is that function specialisation often comes up as
a reason for performance differences of generated code between LLVM and GCC,
which has this enabled by default from optimisation level -O3 and up. And while
this certainly helps a few cpu benchmark cases, this also triggers in real
world codes and is thus a generally useful transformation to have in LLVM.
Function specialisation has great potential to increase compile-times and
code-size. The summary from some investigations with this patch is:
- Compile-time increases for short compile jobs is high relatively, but the
increase in absolute numbers still low.
- For longer compile-jobs, the extra compile time is around 1%, and very much
in line with GCC.
- It is difficult to blame one thing for compile-time increases: it looks like
everywhere a little bit more time is spent processing more functions and
instructions.
- But the function specialisation pass itself is not very expensive; it doesn't
show up very high in the profile of the optimisation passes.
The goal of this work is to reach parity with GCC which means that eventually
we would like to get this enabled by default. But first we would like to address
some of the limitations before that.
Differential Revision: https://reviews.llvm.org/D93838
This patch changes LoopUnrollAndJamPass from FunctionPass to LoopNest pass.
The next patch will utilize LoopNest to effectively handle loop nests.
Also, a crash problem on legacy pass manager is fixed.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D99149
This pass transforms loops that contain a conditional branch with induction
variable. For example, it transforms left code to right code:
newbound = min(n, c)
while (iv < n) { while(iv < newbound) {
A A
if (iv < c) B
B C
C }
} if (iv != n) {
while (iv < n) {
A
C
}
}
Differential Revision: https://reviews.llvm.org/D102234
This patch changes LoopFlattenPass from FunctionPass to LoopNestPass.
Utilize LoopNest and let function 'Flatten' generate information from it.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D102904
This patch changes LoopFlattenPass from FunctionPass to LoopNestPass.
Utilize LoopNest and let function 'Flatten' generate information from it.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D102904
This patch changes LoopFlattenPass from FunctionPass to LoopNestPass.
Utilize LoopNest and let function 'Flatten' generate information from it.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D102904
This patch changes LoopUnrollAndJamPass from FunctionPass to LoopNest pass.
The next patch will utilize LoopNest to effectively handle loop nests.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D99149
This patch changes LoopUnrollAndJamPass from FunctionPass to LoopNest pass.
The next patch will utilize LoopNest to effectively handle loop nests.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D99149
This patch changes LoopUnrollAndJamPass from FunctionPass to LoopNest pass.
The next patch will utilize LoopNest to effectively handle loop nests.
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D99149
Printing pass manager invocations is fairly verbose and not super
useful.
This allows us to remove DebugLogging from pass managers and PassBuilder
since all logging (aside from analysis managers) goes through
instrumentation now.
This has the downside of never being able to print the top level pass
manager via instrumentation, but that seems like a minor downside.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D101797
The CGSCC pass manager interplay with the FunctionAnalysisManagerCGSCCProxy is 'special' in the sense that the former will rerun the latter if there are changes to a SCC structure; that being said, some of the functions in the SCC may be unchanged. In that case, the function simplification pipeline will be re-run, which impacts compile time[1].
This patch allows the function simplification pipeline be skipped if it was already run and the function was not modified since.
The behavior is currently disabled by default. This is because, currently, the rerunning of the function simplification pipeline on an unchanged function may still result in changes. The patch simplifies investigating and fixing those cases where repeated function pass runs do actually positively impact code quality, while offering an easy workaround for those impacted negatively by compile time regressions, and not impacting mainline scenarios.
[1] A [[ http://llvm-compile-time-tracker.com/compare.php?from=eb37d3546cd0c6e67798496634c45e501f7806f1&to=ac722d1190dc7bbdd17e977ef7ec95e69eefc91e&stat=instructions | compile time tracker ]] run with the option enabled.
Differential Revision: https://reviews.llvm.org/D98103
Summary:
This patch registers OpenMPOpt as a Module pass in addition to a CGSCC
pass. This is so certain optimzations that are sensitive to intact
call-sites can happen before inlining. The old `openmpopt` pass name is
changed to `openmp-opt-cgscc` and `openmp-opt` calls the Module pass.
The current module pass only runs a single check but will be expanded in
the future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D99202
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Summary:
The IR is saved in its print form before each pass is started and a
signal handler is registered. If the compilation crashes, the signal
handler will print the saved IR to dbgs(). This option
can be modified using -print-module-scope to get the IR for the complete
module. Note that this option only works with the new pass manager.
Author: Jamie Schmeiser <schmeise@ca.ibm.com>
Reviewed By: aeubanks (Arthur Eubanks) yrouban (Yevgeny Rouban)
Differential Revision: https://reviews.llvm.org/D86657
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
D96109 was recently submitted which contains the refactored implementation of
-funique-internal-linakge-names by adding the unique suffixes in clang rather
than as an LLVM pass. Deleting the former implementation in this change.
Differential Revision: https://reviews.llvm.org/D98234
The GPUDivergenceAnalysis is now renamed to just "DivergenceAnalysis"
since there is no conflict with LegacyDivergenceAnalysis. In the
legacy PM, this analysis can only be used through the legacy DA
serving as a wrapper. It is now made available as a pass in the new
PM, and has no relation with the legacy DA.
The new DA currently cannot handle irreducible control flow; its
presence can cause the analysis to run indefinitely. The analysis is
now modified to detect this and report all instructions in the
function as divergent. This is super conservative, but allows the
analysis to be used without hanging the compiler.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D96615
Sample re-annotation is required in LTO time to achieve a reasonable post-inline profile quality. However, we have seen that such LTO-time re-annotation degrades profile quality. This is mainly caused by preLTO code duplication that is done by passes such as loop unrolling, jump threading, indirect call promotion etc, where samples corresponding to a source location are aggregated multiple times due to the duplicates. In this change we are introducing a concept of distribution factor for pseudo probes so that samples can be distributed for duplicated probes scaled by a factor. We hope that optimizations duplicating code well-maintain the branch frequency information (BFI) based on which probe distribution factors are calculated. Distribution factors are updated at the end of preLTO pipeline to reflect an estimated portion of the real execution count.
This change also introduces a pseudo probe verifier that can be run after each IR passes to detect duplicated pseudo probes.
A saturated distribution factor stands for 1.0. A pesudo probe will carry a factor with the value ranged from 0.0 to 1.0. A 64-bit integral distribution factor field that represents [0.0, 1.0] is associated to each block probe. Unfortunately this cannot be done for callsite probes due to the size limitation of a 32-bit Dwarf discriminator. A 7-bit distribution factor is used instead.
Changes are also needed to the sample profile inliner to deal with prorated callsite counts. Call sites duplicated by PreLTO passes, when later on inlined in LTO time, should have the callees’s probe prorated based on the Prelink-computed distribution factors. The distribution factors should also be taken into account when computing hotness for inline candidates. Also, Indirect call promotion results in multiple callisites. The original samples should be distributed across them. This is fixed by adjusting the callisites' distribution factors.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D93264
Expanding from D94808 - we ensure the same InlineAdvisor is used by both
InlinerPass instances. The notion of mandatory inlining is moved into
the core InlineAdvisor: advisors anyway have to handle that case, so
this change also factors out that a bit better.
Differential Revision: https://reviews.llvm.org/D94825