semantics and improve our handling of default arguments. Specifically,
we follow this order:
- As soon as the see the '}' in the class definition, the class is
complete and we add any implicit declarations (default constructor,
copy constructor, etc.) to the class.
- If there are any default function arguments, parse them
- If there were any inline member function definitions, parse them
As part of this change, we now keep track of the the fact that we've
seen unparsed default function arguments within the AST. See the new
ParmVarDecl::hasUnparsedDefaultArg member. This allows us to properly
cope with calls inside default function arguments to other functions
where we're making use of the default arguments.
Made some C++ error messages regarding failed initializations more
specific.
llvm-svn: 61406
attached to an identifier. Instead, all overloaded functions will be
pushed into scope, and we'll synthesize an OverloadedFunctionDecl on
the fly when we need it.
llvm-svn: 61386
DeclContext. Instead, just keep the list of currently-active
declarations and only build the OverloadedFunctionDecl when we
absolutely need it.
This is a half-step toward eliminating the need to explicitly build
OverloadedFunctionDecls that store sets of overloaded
functions. This was suggested by Argiris a while back, and it's a good
thing for several reasons: first, it eliminates the messy logic that
currently tries to keep the OverloadedFunctionDecl in sync with the
declarations that are being added. Second, it will (eventually)
eliminate the need to allocate memory for overload sets, which could
help performance. Finally, it helps set us up for when name lookup can
return multiple (possibly ambiguous) results, as can happen with
lookup of class members in C++.
Next steps: make the IdentifierResolver store overloads as separate
entries in its list rather than replacing them with an
OverloadedFunctionDecl now, then see how far we can go toward
eliminating OverloadedFunctionDecl entirely.
llvm-svn: 61357
- Overloading has to cope with having both static and non-static
member functions in the overload set.
- The call may or may not have an implicit object argument,
depending on the syntax (x.f() vs. f()) and the context (static
vs. non-static member function).
- We now generate MemberExprs for implicit member access expression.
- We now cope with mutable whenever we're building MemberExprs.
llvm-svn: 61329
which can refer to static data members, enumerators, and member
functions as well as to non-static data members.
Implement correct lvalue computation for member references in C++.
Compute the result type of non-static data members of reference type properly.
llvm-svn: 61294
become useful or correct until we (1) parse template arguments
correctly, (2) have some way to turn template-ids into types,
declarators, etc., and (3) have a real representation of templates.
llvm-svn: 61208