This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Summary:
While setting kill flags on instructions inside a BUNDLE, we bail out as soon
as we set kill flag on a register. But we are missing a check when all the
registers already have the correct kill flag set. We need to bail out in that
case as well.
This patch refactors the old code and simply makes use of the addRegisterKilled
function in MachineInstr.cpp in order to determine whether to set/remove kill
on an instruction.
Reviewers: apazos, t.p.northover, pete, MatzeB
Subscribers: MatzeB, davide, llvm-commits
Differential Revision: http://reviews.llvm.org/D17356
llvm-svn: 269092
Summary:
This intrinsic returns true if the current thread belongs to a live pixel
and false if it belongs to a pixel that we are executing only for derivative
computation. It will be used by Mesa to implement gl_HelperInvocation.
Note that for pixels that are killed during the shader, this implementation
also returns true, but it doesn't matter because those pixels are always
disabled in the EXEC mask.
This unearthed a corner case in the instruction verifier, which complained
about a v_cndmask 0, 1, exec, exec<imp-use> instruction. That's stupid but
correct code, so make the verifier accept it as such.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19191
llvm-svn: 267102
MachineInstr.h and MachineInstrBuilder.h are very popular headers,
widely included across all LLVM backends. It turns out that there only a
handful of TUs that actually care about DI operands on MachineInstrs.
After this change, touching DebugInfoMetadata.h and rebuilding llc only
needs 112 actions instead of 542.
llvm-svn: 266351
This reverts commit fa36fcff16c7d4f78204d6296bf96c3558a4a672.
Causes the following Windows failure:
C:\Buildbot\Slave\llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast\llvm.src\lib\CodeGen\MachineInstr.cpp(762):
error C2338: must be trivially copyable to memmove
llvm-svn: 264516
Summary: isPodLike is as close as we have for is_trivially_copyable.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18483
llvm-svn: 264515
Now the type API is always available, but when global-isel is not
built the implementation does nothing.
Note: The implementation free of ifdefs is WIP and tracked here in PR26576.
llvm-svn: 262873
Change MachineInstr API to prefer MachineInstr& over MachineInstr*
whenever the parameter is expected to be non-null. Slowly inching
toward being able to fix PR26753.
llvm-svn: 262149
Update APIs in MachineInstrBundle.h to take and return MachineInstr&
instead of MachineInstr* when the instruction cannot be null. Besides
being a nice cleanup, this is tacking toward a fix for PR26753.
llvm-svn: 262141
This fixes bugs in copy elimination code in llvm. It slightly changes the
semantics of clearRegisterKills(). This is appropriate because:
- Users in lib/CodeGen/MachineCopyPropagation.cpp and
lib/Target/AArch64RedundantCopyElimination.cpp and
lib/Target/SystemZ/SystemZElimCompare.cpp are incorrect without it
(see included testcase).
- All other users in llvm are unaffected (they pass TRI==nullptr)
- (Kill flags are optional anyway so removing too many shouldn't hurt.)
Differential Revision: http://reviews.llvm.org/D17554
llvm-svn: 261763
Delete MachineInstr::getIterator(), since the term "iterator" is
overloaded when talking about MachineInstr.
- Downcast to ilist_node in iplist::getNextNode() and getPrevNode() so
that ilist_node::getIterator() is still available.
- Add it back as MachineInstr::getInstrIterator(). This matches the
naming in MachineBasicBlock.
- Add MachineInstr::getBundleIterator(). This is explicitly called
"bundle" (not matching MachineBasicBlock) to disintinguish it clearly
from ilist_node::getIterator().
- Update all calls. Some of these I switched to `auto` to remove
boiler-plate, since the new name is clear about the type.
There was one call I updated that looked fishy, but it wasn't clear what
the right answer was. This was in X86FrameLowering::inlineStackProbe(),
added in r252578 in lib/Target/X86/X86FrameLowering.cpp. I opted to
leave the behaviour unchanged, but I'll reply to the original commit on
the list in a moment.
llvm-svn: 261504
We actually need that information only for generic instructions, therefore it
would be nice not to have to pay the extra memory consumption for all
instructions. Especially because a typed non-generic instruction does not make
sense.
The question is then, is it possible to have that information in a union or
something?
My initial thought was that we could have a derived class GenericMachineInstr
with additional information, but in practice it makes little to no sense since
generic MachineInstrs are likely turned into non-generic ones by just switching
the opcode. In other words, we don't want to go through the process of creating
a new, non-generic MachineInstr, object each time we do this switch. The memory
benefit probably is not worth the extra compile time.
Another option would be to keep the type of the MachineInstr in a side table.
This would induce an extra indirection though.
Anyway, I will file a PR to discuss about it and remember we need to come back
to it at some point.
llvm-svn: 260558
For now, generic virtual registers will not have a register class. We may want
to change that. For instance, if we want to use all the methods from
TargetRegisterInfo with generic virtual registers, we need to either have some
sort of generic register classes that do what we want, or teach those methods
how to deal with nullptr register class.
Although the latter seems easy enough to do, we may still want to differenciate
generic register classes from nullptr to catch cases where nullptr gets
introduced by a bug of some sort.
Anyway, I will file a PR to keep track of that.
llvm-svn: 260474
Only single and double FP immediates are correctly printed by
MachineInstr::print() during debug output. Half float type goes to
APFloat::convertToDouble() and hits assertion it is not a double
semantics. This diff prints half machine operands correctly.
This cannot currently be hit by any in-tree target.
Patch by Stanislav Mekhanoshin
llvm-svn: 259857
Move the logic from BranchFolding to use the shared infrastructure for merging MMOs introduced in 256909. This has the effect of making BranchFolding more capable.
In the process, fix a latent bug. The existing handling for merging didn't handle the case where one of the instructions being merged had overflowed and dropped MemRefs. This was a latent bug in the places the code was commoned from, but potentially reachable in BranchFolding.
Once this is in, we're left with a single place to consider implementing MMO unique-ing as proposed in http://reviews.llvm.org/D15230.
Differential Revision: http://reviews.llvm.org/D15913
llvm-svn: 256966
In the discussion on http://reviews.llvm.org/D15730, Andy pointed out we had a utility function for merging MMO lists. Since it turned we actually had two copies and there's another review in progress (http://reviews.llvm.org/D15230) which needs the same, extract it into a utility function and clean up the interfaces to make it easier to use with a MachineInstBuilder.
I introduced a pair here to track size and allocation together. I think we should probably move in the direction of the MachineOperandsRef helper class, but I'm leaving that for further work. I want to get the poison state introduced before I make major changes to the interface.
Differential Revision: http://reviews.llvm.org/D15757
llvm-svn: 256909
While the original code would work with or without braces, it makes sense to
set HaveSemi to true only if (!HaveSemi), otherwise it's already true, so I
put the assignment inside the if block. This addresses PR25998.
llvm-svn: 256688
This is the mirror image of r242395.
When X86FrameLowering::emitEpilogue() looks for where to insert the %esp addition that
deallocates stack space used for local allocations, it assumes that any sequence of pop
instructions from function exit backwards consists purely of restoring callee-save registers.
This may be false, since from some point backward, the pops may be clean-up of stack space
allocated for arguments to a call.
Patch by: amjad.aboud@intel.com
Differential Revision: http://reviews.llvm.org/D12688
llvm-svn: 247784
This abstracts away the test for "when can we fold across a MachineInstruction"
into the the MI interface, and changes call-frame optimization use the same test
the peephole optimizer users.
Differential Revision: http://reviews.llvm.org/D11945
llvm-svn: 244729
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
Another follow-up related to r240848: try a little harder to share slot
tracking calculations within a single `MachineInstr` dump. This is
unrelated to `MachineFunction::print()`, since that should be passing
through the function's `ModuleSlotTracker` by now, but could affect the
speed of dumping from a debugger if there is more than one IR-level
operand.
llvm-svn: 240852
For another 1% speedup on the testcase in PR23865, push the
`ModuleSlotTracker` through to metadata-related printing in
`MachineBasicBlock::print()`.
llvm-svn: 240848
Push `ModuleSlotTracker` through `MachineOperand`s, dropping the time
for `llc -print-machineinstrs` on the testcase in PR23865 from ~13
seconds to ~9 seconds. Now `SlotTracker::processFunctionMetadata()`
accounts for only 8% of the runtime, which seems reasonable.
llvm-svn: 240845
that it is its own entity in the form of MemoryLocation, and update all
the callers.
This is an entirely mechanical change. References to "Location" within
AA subclases become "MemoryLocation", and elsewhere
"AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps
out-of-tree folks update.
llvm-svn: 239885
MIOperands/ConstMIOperands are classes iterating over the MachineOperand
of a MachineInstr, however MachineInstr::mop_iterator does the same
thing.
I assume these two iterators exist to have a uniform interface to
iterate over the operands of a machine instruction bundle and a single
machine instruction. However in practice I find it more confusing to have 2
different iterator classes, so this patch transforms (nearly all) the
code to use mop_iterators.
The only exception being MIOperands::anlayzePhysReg() and
MIOperands::analyzeVirtReg() still needing an equivalent, I leave that
as an exercise for the next patch.
Differential Revision: http://reviews.llvm.org/D9932
This version is slightly modified from the proposed revision in that it
introduces MachineInstr::getOperandNo to avoid the extra counting
variable in the few loops that previously used MIOperands::getOperandNo.
llvm-svn: 238539
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Remove 'inlinedAt:' from MDLocalVariable. Besides saving some memory
(variables with it seem to be single largest `Metadata` contributer to
memory usage right now in -g -flto builds), this stops optimization and
backend passes from having to change local variables.
The 'inlinedAt:' field was used by the backend in two ways:
1. To tell the backend whether and into what a variable was inlined.
2. To create a unique id for each inlined variable.
Instead, rely on the 'inlinedAt:' field of the intrinsic's `!dbg`
attachment, and change the DWARF backend to use a typedef called
`InlinedVariable` which is `std::pair<MDLocalVariable*, MDLocation*>`.
This `DebugLoc` is already passed reliably through the backend (as
verified by r234021).
This commit removes the check from r234021, but I added a new check
(that will survive) in r235048, and changed the `DIBuilder` API in
r235041 to require a `!dbg` attachment whose 'scope:` is in the same
`MDSubprogram` as the variable's.
If this breaks your out-of-tree testcases, perhaps the script I used
(mdlocalvariable-drop-inlinedat.sh) will help; I'll attach it to PR22778
in a moment.
llvm-svn: 235050
Gut all the non-pointer API from the variable wrappers, except an
implicit conversion from `DIGlobalVariable` to `DIDescriptor`. Note
that if you're updating out-of-tree code, `DIVariable` wraps
`MDLocalVariable` (`MDVariable` is a common base class shared with
`MDGlobalVariable`).
llvm-svn: 234840