Previously we used ISD::SHL and ISD::SRL to represent these in SelectionDAG. ISD::SHL/SRL interpret an out of range shift amount as undefined behavior and will constant fold to undef. While the intrinsics are defined to return 0 for out of range shift amounts. A previous patch added a special node for VPSRAV to produce all sign bits.
This was previously believed safe because undefs frequently get turned into 0 either from the constant pool or a desire to not have a false register dependency. But undef is treated specially in some optimizations. For example, its ignored in detection of vector splats. So if the ISD::SHL/SRL can be constant folded and all of the elements with in bounds shift amounts are the same, we might fold it to single element broadcast from the constant pool. This would not put 0s in the elements with out of bounds shift amounts.
We do have an existing InstCombine optimization to use shl/lshr when the shift amounts are all constant and in bounds. That should prevent some loss of constant folding from this change.
Patch by zhutianyang and Craig Topper
Differential Revision: https://reviews.llvm.org/D56695
llvm-svn: 351381
We can't properly represent this with a vselect since the upper elements of the result are supposed to be zeroed regardless of the mask.
This also reuses the new nodes even when the result type fits in 128 bits if the input is q/d and the result is w/b since vselect w/b using k-register condition isn't legal without avx512bw. Currently we're doing this even when avx512bw is enabled, but I might change that.
This fixes some of PR34877
llvm-svn: 350985
Summary: This revision improves previous version (rL330322) which has been reverted due to crashes.
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Reviewers: craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: mike.dvoretsky, DavidKreitzer, sroland, llvm-commits
Differential Revision: https://reviews.llvm.org/D46179
llvm-svn: 339650
Ensure we test on 32-bit and 64-bit targets, and strip -mcpu usage.
Part of ongoing work to ensure we test all intrinsic style tests on 32 and 64 bit targets where possible.
llvm-svn: 333843
We have unmasked intrinsics now and wrap them with a select. This is a net reduction of 36 intrinsics from before the unmasked intrinsics were added.
llvm-svn: 333388
These do the same thing with the first and second sources swapped. They previously came from separate intrinsics that specified different masking behavior. But we can cover that with isel patterns and a single node.
This is a step towards reducing the number of intrinsics needed.
A bunch of tests change because we are now biased to choosing VPERMT over VPERMI when there is nothing to signal that commuting is beneficial.
llvm-svn: 333383
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Patch by tkrupa
Differential Revision: https://reviews.llvm.org/D44785
llvm-svn: 330322
The 128/256-bit versions were no longer used by clang. It uses the legacy SSE/AVX2 version and a select. The 512-bit was changed to the same for consistency.
llvm-svn: 329774
The 128 and 256 bit versions were already not used by clang. This adds an equivalent unmasked 512 bit version. Then autoupgrades all sizes to use unmasked intrinsics plus select.
llvm-svn: 325559
I had to drop fast-isel-abort from a test because we can't fast isel some of the mask stuff. When we used intrinsics we implicitly fell back to SelectionDAG for the intrinsic call without triggering the abort error. But with native IR that doesn't happen the same way.
llvm-svn: 322050
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
Remove builtins from llvm and add AutoUpgrade support.
Also add fast-isel tests for the TEST and TESTN instructions.
Differential Revision: https://reviews.llvm.org/D38736
llvm-svn: 318036
Fixes the vpbroadcastb/w instructions which use GPRs as source operands, to use the correct registers.
The full GPR should be used, and not the subregister, as it happens before the patch.
Fixes pr33795
Differential Revision:
https://reviews.llvm.org/D36479
llvm-svn: 310498
Summary:
These intrinsics aren't used by clang and haven't been for a while.
There's some really terrible codegen in the 32-bit target for avx512bw due to i64 not being legal. But as I said these intrinsics aren't used by clang even before this patch so this codegen reflects our clang behavior today.
Reviewers: spatel, RKSimon, zvi, igorb
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34389
llvm-svn: 306047
This patch is a part one of two reviews, one for the clang and the other for LLVM.
The patch deletes the back-end intrinsics and adds support for them in the auto upgrade.
Differential Revision: https://reviews.llvm.org/D31393
llvm-svn: 299432
We've had several bugs(PR32256, PR32241) recently that resulted from usages of AH/BH/CH/DH either before or after a copy to/from a mask register.
This ultimately occurs because we create COPY_TO_REGCLASS with VK1 and GR8. Then in CopyToFromAsymmetricReg in X86InstrInfo we find a 32-bit super register for the GR8 to emit the KMOV with. But as these tests are demonstrating, its possible for the GR8 register to be a high register and we end up doing an accidental extra or insert from bits 15:8.
I think the best way forward is to stop making copies directly between mask registers and GR8/GR16. Instead I think we should restrict to only copies between mask registers and GR32/GR64 and use EXTRACT_SUBREG/INSERT_SUBREG to handle the conversion from GR32 to GR16/8 or vice versa.
Unfortunately, this complicates fastisel a bit more now to create the subreg extracts where we used to create GR8 copies. We can probably make a helper function to bring down the repitition.
This does result in KMOVD being used for copies when BWI is available because we don't know the original mask register size. This caused a lot of deltas on tests because we have to split the checks for KMOVD vs KMOVW based on BWI.
Differential Revision: https://reviews.llvm.org/D30968
llvm-svn: 298928
The new 512-bit unmasked intrinsics will make it easy to handle these with the SSE/AVX intrinsics in InstCombine where we currently have a TODO.
llvm-svn: 295290
LowerBuildVectorv16i8/LowerBuildVectorv8i16 insert values into a UNDEF vector if the build vector doesn't contain any zero elements, resulting in register dependencies with a previous use of the register.
This patch attempts to break the register dependency by either always zeroing the vector before hand or (if we're inserting to the 0'th element) by using VZEXT_MOVL(SCALAR_TO_VECTOR(i32 AEXT(Elt))) which lowers to (V)MOVD and performs a similar function. Additionally (V)MOVD is a shorter instruction than PINSRB/PINSRW. We already do something similar for SSE41 PINSRD.
On pre-SSE41 LowerBuildVectorv16i8 we go a little further and use VZEXT_MOVL(SCALAR_TO_VECTOR(i32 ZEXT(Elt))) if the build vector contains zeros to avoid the vector zeroing at the cost of a scalar zero extension, which can probably be brought over to the other cases in a future patch in some cases (load folding etc.)
Differential Revision: https://reviews.llvm.org/D29720
llvm-svn: 294581
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
I added API for creation a target specific memory node in DAG. Today, all memory nodes are common for all targets and their constructors are located in SelectionDAG.cpp.
There are some cases in X86 where we need to create a special node - truncation-with-saturation store, float-to-half-store.
In the current patch I added truncation-with-saturation nodes and I'm using them for intrinsics. In the future I plan to implement DAG lowering for truncation-with-saturation pattern.
Differential Revision: https://reviews.llvm.org/D27899
llvm-svn: 290250
The same thing was done to 32-bit and 64-bit element sizes previously.
This will allow us to support these shuffls in InstCombineCalls along with the other variable shift intrinsics.
llvm-svn: 287312
SUBREG_TO_REG is supposed to indicate that the super register has been zeroed, but we can't prove that if we don't know where it came from.
llvm-svn: 281885
This helped to improved memory-folding and register coalescing optimizations.
Also, this patch fixed the tracker #17229.
Reviewer: Craig Topper.
Differential Revision: https://reviews.llvm.org/D23108
llvm-svn: 278431
Optimized lowering of BITCAST node. The BITCAST node can be replaced with COPY_TO_REG instead of KMOV.
It allows to suppress two opposite BITCAST operations and avoid redundant "movs".
Differential Revision: https://reviews.llvm.org/D23247
llvm-svn: 277958