The C++ rules briefly allowed this, but the rule changed nearly 10 years
ago and we never updated our implementation to match. However, we've
warned on this by default for a long time, and no other compiler accepts
(even as an extension).
constant initialization.
Removing this zeroing regressed our code generation in a few cases, also
fixed here. We now compute whether a variable has constant destruction
even if it doesn't have a constant initializer, by trying to destroy a
default-initialized value, and skip emitting a trivial default
constructor for a variable even if it has non-trivial (but perhaps
constant) destruction.
When used as qualified names, pseudo-destructors are always named as if
they were members of the type, never as members of the namespace
enclosing the type.
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers, including ranking
reference bindings against non-reference bindings if they differ in
non-top-level qualification conversions.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
This reinstates commit de21704ba9,
reverted in commit d8018233d1, with
workarounds for some overload resolution ordering problems introduced by
CWG2352.
This reverts commit de21704ba9.
Regressed/causes this to error due to ambiguity:
void f(const int * const &);
void f(int *);
int main() {
int * x;
f(x);
}
(in case it's important - the original case where this turned up was a
member function overload in a class template with, essentially:
f(const T1&)
f(T2*)
(where T1 == X const *, T2 == X))
It's not super clear to me if this ^ is expected behavior, in which case
I'm sorry about the revert & happy to look into ways to fix the original
code.
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
Summary:
The overload resolution for enums with a fixed underlying type has changed in the C++14 standard. This patch implements the new rule.
Patch by Mark de Wever!
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65695
llvm-svn: 373866
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r363337, reverted in r363352.
llvm-svn: 363429
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
This reinstates r363295, reverted in r363352, with a fix for PR42276:
we now produce a proper name for a non-odr-use reference to a static
constexpr data member. The name <mangled-name>.const is used in that
case; such names are reserved to the implementation for cases such as
this and should demangle nicely.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363428
Revert 363340 "Remove unused SK_LValueToRValue initialization step."
Revert 363337 "PR23833, DR2140: an lvalue-to-rvalue conversion on a glvalue of type"
Revert 363295 "C++ DR712 and others: handle non-odr-use resulting from an lvalue-to-rvalue conversion applied to a member access or similar not-quite-trivial lvalue expression."
llvm-svn: 363352
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r345562, reverted in r346065, now that CodeGen's
handling of non-odr-used variables has been fixed.
llvm-svn: 363337
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363295
object rather than tracking the originating expression.
This is groundwork for supporting polymorphic typeid expressions. (Note
that this somewhat regresses our support for DR1968, but it turns out
that that never actually worked anyway, at least in non-trivial cases.)
This reinstates r360974, reverted in r360988, with a fix for a
static_assert failure on 32-bit builds: force Type base class to have
8-byte alignment like the rest of Clang's AST nodes.
llvm-svn: 360995
object rather than tracking the originating expression.
This is groundwork for supporting polymorphic typeid expressions. (Note
that this somewhat regresses our support for DR1968, but it turns out
that that never actually worked anyway, at least in non-trivial cases.)
llvm-svn: 360974
The change breaks libc++ with the follwing error:
In file included from valarray:4:
.../include/c++/v1/valarray:1062:60: error: explicit instantiation declaration of 'valarray<_Tp>' with internal linkage
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS valarray<size_t>::valarray(size_t))
^
.../include/c++/v1/valarray:1063:60: error: explicit instantiation declaration of '~valarray<_Tp>' with internal linkage
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS valarray<size_t>::~valarray())
llvm-svn: 359076
template specialization if there is no matching non-template function.
This exposed a couple of related bugs:
- we would sometimes substitute into a friend template instead of a
suitable non-friend declaration; this would now crash because we'd
decide the specialization of the friend is a redeclaration of itself
- ADL failed to properly handle the case where an invisible local
extern declaration redeclares an invisible friend
Both are fixed herein: in particular, we now never make invisible
friends or local extern declarations visible to name lookup unless
they are the only declaration of the entity. (We already mostly did
this for local extern declarations.)
llvm-svn: 350505
This exposes a (known) CodeGen bug: it can't cope with emitting lvalue
expressions that denote non-odr-used but usable-in-constant-expression
variables. See PR39528 for a testcase.
Reverted for now until that issue can be fixed.
llvm-svn: 346065
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
llvm-svn: 345562
Summary:
This change rejects the shadowing of a capture by a parameter in lambdas in C++17.
```
int main() {
int a;
auto f = [a](int a) { return a; };
}
```
results in:
```
main.cpp:3:20: error: a lambda parameter cannot shadow an explicitly captured entity
auto f = [a](int a) { return a; };
^
main.cpp:3:13: note: variable a is explicitly captured here
auto f = [a](int a) { return a; };
^
```
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: lebedev.ri, erik.pilkington, cfe-commits
Differential Revision: https://reviews.llvm.org/D53595
llvm-svn: 345308
This change implements C++ DR1696, which makes initialization of a
reference member of a class from a temporary object ill-formed. The
standard wording here is imprecise, but we interpret it as meaning that
any time a mem-initializer would result in lifetime extension, the
program is ill-formed.
This reinstates r337226, reverted in r337255, with a fix for the
InitializedEntity alignment problem that was breaking ARM buildbots.
llvm-svn: 337329
This change breaks on ARM because pointers to clang::InitializedEntity are only
4 byte aligned and do not have 3 bits to store values. A possible solution
would be to change the fields in clang::InitializedEntity to enforce a bigger
alignment requirement.
The error message is
llvm/include/llvm/ADT/PointerIntPair.h:132:3: error: static_assert failed "PointerIntPair with integer size too large for pointer"
static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
include/llvm/ADT/PointerIntPair.h:73:13: note: in instantiation of template class 'llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> >' requested here
Value = Info::updateInt(Info::updatePointer(0, PtrVal),
llvm/include/llvm/ADT/PointerIntPair.h:51:5: note: in instantiation of member function 'llvm::PointerIntPair<const clang::InitializedEntity *, 3, (anonymous namespace)::LifetimeKind, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *>, llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> > >::setPointerAndInt' requested here
setPointerAndInt(PtrVal, IntVal);
^
llvm/tools/clang/lib/Sema/SemaInit.cpp:6237:12: note: in instantiation of member function 'llvm::PointerIntPair<const clang::InitializedEntity *, 3, (anonymous namespace)::LifetimeKind, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *>, llvm::PointerIntPairInfo<const clang::InitializedEntity *, 3, llvm::PointerLikeTypeTraits<const clang::InitializedEntity *> > >::PointerIntPair' requested here
return {Entity, LK_Extended};
Full log here:
http://lab.llvm.org:8011/builders/clang-cmake-armv7-global-isel/builds/1330http://lab.llvm.org:8011/builders/clang-cmake-armv7-full/builds/1394
llvm-svn: 337255
This change implements C++ DR1696, which makes initialization of a
reference member of a class from a temporary object ill-formed. The
standard wording here is imprecise, but we interpret it as meaning that
any time a mem-initializer would result in lifetime extension, the
program is ill-formed.
llvm-svn: 337226
This allows more qualification conversions, eg. conversion from
'int *(*)[]' -> 'const int *const (*)[]'
is now permitted, along with all the consequences of that: more types
are similar, more cases are permitted by const_cast, and conversely,
fewer "casting away constness" cases are permitted by reinterpret_cast.
llvm-svn: 336745
layout" rules.
The new rules say that a standard-layout struct has its first non-static
data member and all base classes at offset 0, and consider a class to
not be standard-layout if that would result in multiple subobjects of a
single type having the same address.
We track "is C++11 standard-layout class" separately from "is
standard-layout class" so that the ABIs that need this information can
still use it.
Differential Revision: https://reviews.llvm.org/D45176
llvm-svn: 329332
More generally, this permits a template to be specialized in any scope in which
it could be defined, so this also supersedes DR44 and DR374 (the latter of
which we previously only implemented in C++11 mode onwards due to unclarity as
to whether it was a DR).
llvm-svn: 327705
While here, fix up the myriad other ways in which Sema's two "can this handler
catch that exception?" implementations get things wrong and unify them.
llvm-svn: 322431