This patch adds a test for the PowerPC fma compiler builtins, some variations
of which negate inputs and outputs. The code to generate IR for these
builtins was untested before this patch.
Originally, the code used the outdated method of subtracting floating point
values from -0.0 as floating point negation. This patch remedies that.
Patch by: Drew Wock <drew.wock@sas.com>
Differential Revision: https://reviews.llvm.org/D76949
Summary: This allows instrumenting things like global initializers
Reviewers: dberris, MaskRay, smeenai
Subscribers: cfe-commits, johnislarry
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77191
This reverts commit 28518d9ae3.
There is a failure in MsgPackReader.cpp when built with clang. It
complains about "signext and zeroext" are incompatible. Investigating
offline if it is infact a UB in the MsgPackReader code.
Consider a callee function that has a call (C) within it which feeds
into the return. When we inline that callee into a callsite that has
return attributes, we can backward propagate those attributes to the
call (C) within that inlined callee body.
This is safe to do so only if we can guarantee transfer of execution to
successor in the window of instructions between return value (i.e. the
call C) and the return instruction.
See added test cases.
Reviewed-By: reames, jdoerfert
Differential Revision: https://reviews.llvm.org/D76140
Currently, bpf does not specify 128bit alignment in its
layout spec. So for a structure like
struct ipv6_key_t {
unsigned pid;
unsigned __int128 saddr;
unsigned short lport;
};
clang will generate IR type
%struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }
Additional padding is to ensure later IR->MIR can generate correct
stack layout with target layout spec.
But it is common practice for a tracing program to be
first compiled with target flag (e.g., x86_64 or aarch64) through
clang to generate IR and then go through llc to generate bpf
byte code. Tracing program often refers to kernel internal
data structures which needs to be compiled with non-bpf target.
But such a compilation model may cause a problem on aarch64.
The bcc issue https://github.com/iovisor/bcc/issues/2827
reported such a problem.
For the above structure, since aarch64 has "i128:128" in its
layout string, the generated IR will have
%struct.ipv6_key_t = type { i32, i128, i16 }
Since bpf does not have "i128:128" in its spec string,
the selectionDAG assumes alignment 8 for i128 and
computes the stack storage size for the above is 32 bytes,
which leads incorrect code later.
The x86_64 does not have this issue as it does not have
"i128:128" in its layout spec as it does permits i128 to
be alignmented at 8 bytes at stack. Its IR type looks like
%struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }
The fix here is add i128 support in layout spec, the same as
aarch64. The only downside is we may have less optimal stack
allocation in certain cases since we require 16byte alignment
for i128 instead of 8. But this is probably fine as i128 is
not used widely and in most cases users should already
have proper alignment.
Differential Revision: https://reviews.llvm.org/D76587
Summary:
Unsigned types can alias the corresponding signed types. I don't see
that this is explicitly mentioned in the Embedded-C specification, but
I think it should work the same as for the integer types.
Patch by: materi
Reviewers: ebevhan, leonardchan
Reviewed By: leonardchan
Subscribers: kosarev, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76856
Summary:
This patch implements the following CDE intrinsics:
T __arm_vcx1q_m(int coproc, T inactive, uint32_t imm, mve_pred_t p);
T __arm_vcx2q_m(int coproc, T inactive, U n, uint32_t imm, mve_pred_t p);
T __arm_vcx3q_m(int coproc, T inactive, U n, V m, uint32_t imm, mve_pred_t p);
T __arm_vcx1qa_m(int coproc, T acc, uint32_t imm, mve_pred_t p);
T __arm_vcx2qa_m(int coproc, T acc, U n, uint32_t imm, mve_pred_t p);
T __arm_vcx3qa_m(int coproc, T acc, U n, V m, uint32_t imm, mve_pred_t p);
The intrinsics are not part of the released ACLE spec, but internally at
Arm we have reached consensus to add them to the next ACLE release.
Reviewers: simon_tatham, MarkMurrayARM, ostannard, dmgreen
Reviewed By: simon_tatham
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76610
Summary:
These were accidentally left out of D76123. I added tests for the
other three instructions in this small cross-product family (vqdmlah,
vqrdmlah, vqrdmlash) but missed this one.
Reviewers: miyuki
Reviewed By: miyuki
Subscribers: kristof.beyls, dmgreen, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76714
There's inconsistency in handling array types between the
`distributeFunctionTypeAttrXXX` functions and the
`FunctionTypeUnwrapper` in `SemaType.cpp`.
This patch lets `FunctionTypeUnwrapper` apply function type attributes
through array types.
Differential Revision: https://reviews.llvm.org/D75109
Summary:
Since the conditional operator cannot be used with vector conditions
in C, we need a builtin to be able to express this operation in C
source.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76538
Summary:
I've implemented them as target-specific IR intrinsics rather than
using `@llvm.experimental.vector.reduce.add`, on the grounds that the
'experimental' intrinsic doesn't currently have much code generation
benefit, and my replacements encapsulate the sign- or zero-extension
so that you don't expose the illegal MVE vector type (`<4 x i64>`) in
IR.
The machine instructions come in two versions: with and without an
input accumulator. My new IR intrinsics, like the 'experimental' one,
don't take an accumulator parameter: we represent that by just adding
on the input value using an ordinary i32 or i64 add. So if you write
the `vaddvaq` C-language intrinsic with an input accumulator of zero,
it can be optimised to VADDV, and conversely, if you write something
like `x += vaddvq(y)` then that can be combined into VADDVA.
Most of this is achieved in isel lowering, by converting these IR
intrinsics into the existing `ARMISD::VADDV` family of custom SDNode
types. For the difficult case (64-bit accumulators), isel lowering
already implements the optimization of folding an addition into a
VADDLV to make a VADDLVA; so once we've made a VADDLV, our job is
already done, except that I had to introduce a parallel set of ARMISD
nodes for the //predicated// forms of VADDLV.
For the simpler VADDV, we handle the predicated form by just leaving
the IR intrinsic alone and matching it in an ordinary dag pattern.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76491
Summary:
I've implemented these as target-specific IR intrinsics, because
they're not //quite// enough like @llvm.experimental.vector.reduce.min
(which doesn't take the extra scalar parameter). Also this keeps the
predicated and unpredicated versions looking similar, and the
floating-point minnm/maxnm versions fold into the same schema.
We had a couple of min/max reductions already implemented, from the
initial pathfinding exercise in D67158. Those were done by having
separate IR intrinsic names for the signed and unsigned integer
versions; as part of this commit, I've changed them to use a flag
parameter indicating signedness, which is how we ended up deciding
that the rest of the MVE intrinsics family ought to work. So now
hopefully the ewhole lot is consistent.
In the new llc test, the output code from the `v8f16` test functions
looks quite unpleasant, but most of it is PCS lowering (you can't pass
a `half` directly in or out of a function). In other circumstances,
where you do something else with your `half` in the same function, it
doesn't look nearly as nasty.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76490
Summary:
This patch implements the following CDE intrinsics:
int8x16_t __arm_vreinterpretq_s8_u8 (uint8x16_t in);
uint16x8_t __arm_vreinterpretq_u16_u8 (uint8x16_t in);
int16x8_t __arm_vreinterpretq_s16_u8 (uint8x16_t in);
uint32x4_t __arm_vreinterpretq_u32_u8 (uint8x16_t in);
int32x4_t __arm_vreinterpretq_s32_u8 (uint8x16_t in);
uint64x2_t __arm_vreinterpretq_u64_u8 (uint8x16_t in);
int64x2_t __arm_vreinterpretq_s64_u8 (uint8x16_t in);
float16x8_t __arm_vreinterpretq_f16_u8 (uint8x16_t in);
float32x4_t __arm_vreinterpretq_f32_u8 (uint8x16_t in);
These intrinsics are header-only because they reuse the existing
MVE vreinterpret clang built-ins.
This set is slightly different from the published specification
(see https://static.docs.arm.com/101028/0010/ACLE_2019Q4_release-0010.pdf):
it includes
int8x16_t __arm_vreinterpretq_s8_u8 (uint8x16_t in);
which was unintentionally ommitted from the spec, and
does not include
float64x2_t __arm_vreinterpretq_f64_u8 (uint8x16_t in);
The float64x2_t type requires additional implementation
effort, and we are not including it yet.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76300
Summary:
This patch implements the following intrinsics:
uint8x16_t __arm_vcx1q_u8 (int coproc, uint32_t imm);
T __arm_vcx1qa(int coproc, T acc, uint32_t imm);
T __arm_vcx2q(int coproc, T n, uint32_t imm);
uint8x16_t __arm_vcx2q_u8(int coproc, T n, uint32_t imm);
T __arm_vcx2qa(int coproc, T acc, U n, uint32_t imm);
T __arm_vcx3q(int coproc, T n, U m, uint32_t imm);
uint8x16_t __arm_vcx3q_u8(int coproc, T n, U m, uint32_t imm);
T __arm_vcx3qa(int coproc, T acc, U n, V m, uint32_t imm);
Most of them are polymorphic. Furthermore, some intrinsics are
polymorphic by 2 or 3 parameter types, such polymorphism is not
supported by the existing MVE/CDE tablegen backends, also we don't
really want to have a combinatorial explosion caused by 1000 different
combinations of 3 vector types. Because of this some intrinsics are
implemented as macros involving a cast of the polymorphic arguments to
uint8x16_t.
The IR intrinsics are even more restricted in terms of types: all MVE
vectors are cast to v16i8.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76299
Summary:
This change implements ACLE CDE intrinsics that translate to
instructions working with general-purpose registers.
The specification is available at
https://static.docs.arm.com/101028/0010/ACLE_2019Q4_release-0010.pdf
Each ACLE intrinsic gets a corresponding LLVM IR intrinsic (because
they have distinct function prototypes). Dual-register operands are
represented as pairs of i32 values. Because of this the instruction
selection for these intrinsics cannot be represented as TableGen
patterns and requires custom C++ code.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76296
Passing small data limit to RISCVELFTargetObjectFile by module flag,
So the backend can set small data section threshold by the value.
The data will be put into the small data section if the data smaller than
the threshold.
Differential Revision: https://reviews.llvm.org/D57497
Summary:
The range checks performed for the vqrdmulh_lane and vqrdmulh_lane Neon
intrinsics were incorrectly using their return type as the base type for
the range check performed on their 'lane' argument.
This patch updates those intrisics to use the type of the proper reference
argument to perform the range checks.
Reviewers: jmolloy, t.p.northover, rsmith, olista01, dnsampaio
Reviewed By: dnsampaio
Subscribers: dnsampaio, kristof.beyls, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74766
Summary:
Range checks were not properly performed in the lane arguments of Neon
intrinsics implemented based on splat operations. Calls to those
intrinsics where translated to `__builtin__shufflevector` calls directly
by the pre-processor through the arm_neon.h macros, missing the chance
for the proper range checks.
This patch enables the range check by introducing an auxiliary splat
instruction in arm_neon.td, delaying the translation to shufflevector
calls to CGBuiltin.cpp in clang after the checks were performed.
Reviewers: jmolloy, t.p.northover, rsmith, olista01, ostannard
Reviewed By: ostannard
Subscribers: ostannard, dnsampaio, danielkiss, kristof.beyls, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74619
Summary:
Some of the `*_laneq` intrinsics defined in arm_neon.td were missing the
setting of the `isLaneQ` attribute. This patch sets the attribute on the
related definitions, as they will be required to properly perform range
checks on their lane arguments.
Reviewers: jmolloy, t.p.northover, rsmith, olista01, dnsampaio
Reviewed By: dnsampaio
Subscribers: dnsampaio, kristof.beyls, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74616
The SVE ACLE allows using a short-form for the intrinsics, e.g.
the following two declarations generate the same code:
svuint32_t svld1(svbool_t, uint32_t const *);
svuint32_t svld1_u32(svbool_t, uint32_t const *);
using the attribute:
__clang_arm_builtin_alias
so that any call to svld1(svbool_t, uint32_t const *) will
map to __builtin_sve_svld1_u32.
Reviewers: SjoerdMeijer, miyuki, efriedma, simon_tatham, rengolin
Reviewed By: SjoerdMeijer
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75861
Summary:
This is another set of instructions too complicated to be sensibly
expressed in IR by anything short of a target-specific intrinsic.
Given input vectors a,b, the instruction generates intermediate values
2*(a[0]*b[0]+a[1]+b[1]), 2*(a[2]*b[2]+a[3]+b[3]), etc; takes the high
half of each double-width values, and overwrites half the lanes in the
output vector c, which you therefore have to provide the input value
of. Optionally you can swap the elements of b so that the are things
like a[0]*b[1]+a[1]*b[0]; optionally you can round to nearest when
taking the high half; and optionally you can take the difference
rather than sum of the two products. Finally, saturation is applied
when converting back to a single-width vector lane.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76359
Summary:
These are complicated integer multiply+add instructions with extra
saturation, taking the high half of a double-width product, and
optional rounding. There's no sensible way to represent that in
standard IR, so I've converted the clang builtins directly to
target-specific intrinsics.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76123
Summary:
These instructions compute multiply+add in integers, with one of the
operands being a splat of a scalar. (VMLA and VMLAS differ in whether
the splat operand is a multiplier or the addend.)
I've represented these in IR using existing standard IR operations for
the unpredicated forms. The predicated forms are done with target-
specific intrinsics, as usual.
When operating on n-bit vector lanes, only the bottom n bits of the
i32 scalar operand are used. So we have to tell that to isel lowering,
to allow it to remove a pointless sign- or zero-extension instruction
on that input register. That's done in `PerformIntrinsicCombine`, but
first I had to enable `PerformIntrinsicCombine` for MVE targets
(previously all the intrinsics it handled were for NEON), and make it
a method of `ARMTargetLowering` so that it can get at
`SimplifyDemandedBits`.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76122
Summary:
[Clang] Attribute to allow defining undef global variables
Initializing global variables is very cheap on hosted implementations. The
C semantics of zero initializing globals work very well there. It is not
necessarily cheap on freestanding implementations. Where there is no loader
available, code must be emitted near the start point to write the appropriate
values into memory.
At present, external variables can be declared in C++ and definitions provided
in assembly (or IR) to achive this effect. This patch provides an attribute in
order to remove this reason for writing assembly for performance sensitive
freestanding implementations.
A close analogue in tree is LDS memory for amdgcn, where the kernel is
responsible for initializing the memory after it starts executing on the gpu.
Uninitalized variables in LDS are observably cheaper than zero initialized.
Patch is loosely based on the cuda __shared__ and opencl __local variable
implementation which also produces undef global variables.
Reviewers: kcc, rjmccall, rsmith, glider, vitalybuka, pcc, eugenis, vlad.tsyrklevich, jdoerfert, gregrodgers, jfb, aaron.ballman
Reviewed By: rjmccall, aaron.ballman
Subscribers: Anastasia, aaron.ballman, davidb, Quuxplusone, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74361
This flag is used by avr-gcc (starting with v10) to set the width of the
double type. The double type is by default interpreted as a 32-bit
floating point number in avr-gcc instead of a 64-bit floating point
number as is common on other architectures. Starting with GCC 10, a new
option has been added to control this behavior:
https://gcc.gnu.org/wiki/avr-gcc#Deviations_from_the_Standard
This commit keeps the default double at 32 bits but adds support for the
-mdouble flag (-mdouble=32 and -mdouble=64) to control this behavior.
Differential Revision: https://reviews.llvm.org/D76181
Summary:
Adds the constraints described below to ensure that we
can tie variables of SVE ACLE types to operands in inline-asm:
- y: SVE registers Z0-Z7
- Upl: One of the low eight SVE predicate registers (P0-P7)
- Upa: Full range of SVE predicate registers (P0-P15)
Reviewers: sdesmalen, huntergr, rovka, cameron.mcinally, efriedma, rengolin
Reviewed By: efriedma
Subscribers: miyuki, tschuett, rkruppe, psnobl, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75690
This patch adds 'q' to mean 'scalable vector' in the builtin
type string, and for SVE will return the matching builtin
type as defined in the C/C++ language extensions for SVE.
This patch also adds some scaffolding to generate the arm_sve.h
header file, and some builtin definitions (+CodeGen) to be able
to implement some simple masked load intrinsics that use the
ACLE types, such as:
svint8_t test_svld1_s8(svbool_t pg, const int8_t *base) {
return svld1_s8(pg, base);
}
Reviewers: efriedma, rjmccall, rovka, rsandifo-arm, rengolin
Reviewed By: efriedma
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75298