Syntax:
asm [volatile] goto ( AssemblerTemplate
:
: InputOperands
: Clobbers
: GotoLabels)
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
New llvm IR is "callbr" for inline asm goto instead "call" for inline asm
For:
asm goto("testl %0, %0; jne %l1;" :: "r"(cond)::label_true, loop);
IR:
callbr void asm sideeffect "testl $0, $0; jne ${1:l};", "r,X,X,~{dirflag},~{fpsr},~{flags}"(i32 %0, i8* blockaddress(@foo, %label_true), i8* blockaddress(@foo, %loop)) #1
to label %asm.fallthrough [label %label_true, label %loop], !srcloc !3
asm.fallthrough:
Compiler need to generate:
1> a dummy constarint 'X' for each label.
2> an unique fallthrough label for each asm goto stmt " asm.fallthrough%number".
Diagnostic
1> duplicate asm operand name are used in output, input and label.
2> goto out of scope.
llvm-svn: 362045
This patch adjusts `PragmaOpenMPHandler` to set the location of
`tok::annot_pragma_openmp` to the `#pragma` location instead of the
`omp` location so that the former becomes the start location of the
OpenMP AST node. This can be useful when, for example, rewriting a
directive using Clang's Rewrite facility. Most of this patch updates
tests for changes to locations in diagnostics and `-ast-dump` output.
Reviewed By: ABataev, lebedev.ri, Meinersbur, aaron.ballman
Differential Revision: https://reviews.llvm.org/D61509
llvm-svn: 361867
This caused Clang to start erroring on the following:
struct S {
template <typename = int> explicit S();
};
struct T : S {};
struct U : T {
U();
};
U::U() {}
$ clang -c /tmp/x.cc
/tmp/x.cc:10:4: error: call to implicitly-deleted default constructor of 'T'
U::U() {}
^
/tmp/x.cc:5:12: note: default constructor of 'T' is implicitly deleted
because base class 'S' has no default constructor
struct T : S {};
^
1 error generated.
See discussion on the cfe-commits email thread.
This also reverts the follow-ups r359966 and r359968.
> this patch adds support for the explicit bool specifier.
>
> Changes:
> - The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
> - The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
> - Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
> - Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
> - The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
> - Test for Semantic and Serialization were added.
>
> This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
> Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
>
> Patch by Tyker
>
> Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 360024
new expression.
This was voted into C++20 as a defect report resolution, so we
retroactively apply it to all prior language modes (though it can never
actually be used before C++11 mode).
llvm-svn: 360006
this patch adds support for the explicit bool specifier.
Changes:
- The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
- The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
- Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
- Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
- The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
- Test for Semantic and Serialization were added.
This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
Patch by Tyker
Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 359949
explicit function specialization with the MemberSpecializationInfo used
everywhere else.
Not NFC: the ad-hoc pattern tracking was not being serialized /
deserialized properly. That's fixed here.
llvm-svn: 359747
is not used since it consumes all preprocessor directives until it returns
a real token. Using the specific Lexer (i.e. CurLexer->Lex) makes it
possible to stop skipping after an #include or #pragma hdrstop. Previously
the skipping code was only handling CurLexer, now all will be handled
correctly.
Fixes: llvm.org/PR41585
Differential Revision: https://reviews.llvm.org/D61217
llvm-svn: 359506
allocators.
It is better to deduce omp_allocator_handle_t type from the predefined
allocators, because omp.h header might not define it explicitly. Plus,
it allows to identify the predefined allocators correctly when trying to
build the allcoator for the global variables.
llvm-svn: 356607
Summary:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf, page 3:
```
structured block
For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.
COMMENT: See Section 2.1 on page 38 for restrictions on structured
blocks.
```
```
2.1 Directive Format
Some executable directives include a structured block. A structured block:
• may contain infinite loops where the point of exit is never reached;
• may halt due to an IEEE exception;
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);
• may be an expression statement, iteration statement, selection statement, or try block, provided
that the corresponding compound statement obtained by enclosing it in { and } would be a
structured block; and
Restrictions
Restrictions to structured blocks are as follows:
• Entry to a structured block must not be the result of a branch.
• The point of exit cannot be a branch out of the structured block.
C / C++
• The point of entry to a structured block must not be a call to setjmp().
• longjmp() and throw() must not violate the entry/exit criteria.
```
Of particular note here is the fact that OpenMP structured blocks are as-if `noexcept`,
in the same sense as with the normal `noexcept` functions in C++.
I.e. if throw happens, and it attempts to travel out of the `noexcept` function
(here: out of the current structured-block), then the program terminates.
Now, one of course can say that since it is explicitly prohibited by the Specification,
then any and all programs that violate this Specification contain undefined behavior,
and are unspecified, and thus no one should care about them. Just don't write broken code /s
But i'm not sure this is a reasonable approach.
I have personally had oss-fuzz issues of this origin - exception thrown inside
of an OpenMP structured-block that is not caught, thus causing program termination.
This issue isn't all that hard to catch, it's not any particularly different from
diagnosing the same situation with the normal `noexcept` function.
Now, clang static analyzer does not presently model exceptions.
But clang-tidy has a simplisic [[ https://clang.llvm.org/extra/clang-tidy/checks/bugprone-exception-escape.html | bugprone-exception-escape ]] check,
and it is even refactored as a `ExceptionAnalyzer` class for reuse.
So it would be trivial to use that analyzer to check for
exceptions escaping out of OpenMP structured blocks. (D59466)
All that sounds too great to be true. Indeed, there is a caveat.
Presently, it's practically impossible to do. To check a OpenMP structured block
you need to somehow 'get' the OpenMP structured block, and you can't because
it's simply not modelled in AST. `CapturedStmt`/`CapturedDecl` is not it's representation.
Now, it is of course possible to write e.g. some AST matcher that would e.g.
match every OpenMP executable directive, and then return the whatever `Stmt` is
the structured block of said executable directive, if any.
But i said //practically//. This isn't practical for the following reasons:
1. This **will** bitrot. That matcher will need to be kept up-to-date,
and refreshed with every new OpenMP spec version.
2. Every single piece of code that would want that knowledge would need to
have such matcher. Well, okay, if it is an AST matcher, it could be shared.
But then you still have `RecursiveASTVisitor` and friends.
`2 > 1`, so now you have code duplication.
So it would be reasonable (and is fully within clang AST spirit) to not
force every single consumer to do that work, but instead store that knowledge
in the correct, and appropriate place - AST, class structure.
Now, there is another hoop we need to get through.
It isn't fully obvious //how// to model this.
The best solution would of course be to simply add a `OMPStructuredBlock` transparent
node. It would be optimal, it would give us two properties:
* Given this `OMPExecutableDirective`, what's it OpenMP structured block?
* It is trivial to check whether the `Stmt*` is a OpenMP structured block (`isa<OMPStructuredBlock>(ptr)`)
But OpenMP structured block isn't **necessarily** the first, direct child of `OMP*Directive`.
(even ignoring the clang's `CapturedStmt`/`CapturedDecl` that were inserted inbetween).
So i'm not sure whether or not we could re-create AST statements after they were already created?
There would be other costs to a new AST node: https://bugs.llvm.org/show_bug.cgi?id=40563#c12
```
1. You will need to break the representation of loops. The body should be replaced by the "structured block" entity.
2. You will need to support serialization/deserialization.
3. You will need to support template instantiation.
4. You will need to support codegen and take this new construct to account in each OpenMP directive.
```
Instead, there **is** an functionally-equivalent, alternative solution, consisting of two parts.
Part 1:
* Add a member function `isStandaloneDirective()` to the `OMPExecutableDirective` class,
that will tell whether this directive is stand-alone or not, as per the spec.
We need it because we can't just check for the existance of associated statements,
see code comment.
* Add a member function `getStructuredBlock()` to the OMPExecutableDirective` class itself,
that assert that this is not a stand-alone directive, and either return the correct loop body
if this is a loop-like directive, or the captured statement.
This way, given an `OMPExecutableDirective`, we can get it's structured block.
Also, since the knowledge is ingrained into the clang OpenMP implementation,
it will not cause any duplication, and //hopefully// won't bitrot.
Great we achieved 1 of 2 properties of `OMPStructuredBlock` approach.
Thus, there is a second part needed:
* How can we check whether a given `Stmt*` is `OMPStructuredBlock`?
Well, we can't really, in general. I can see this workaround:
```
class FunctionASTVisitor : public RecursiveASTVisitor<FunctionASTVisitor> {
using Base = RecursiveASTVisitor<FunctionASTVisitor>;
public:
bool VisitOMPExecDir(OMPExecDir *D) {
OmpStructuredStmts.emplace_back(D.getStructuredStmt());
}
bool VisitSOMETHINGELSE(???) {
if(InOmpStructuredStmt)
HI!
}
bool TraverseStmt(Stmt *Node) {
if (!Node)
return Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node)
++InOmpStructuredStmt;
Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node) {
OmpStructuredStmts.pop_back();
--InOmpStructuredStmt;
}
return true;
}
std::vector<Stmt*> OmpStructuredStmts;
int InOmpStructuredStmt = 0;
};
```
But i really don't see using it in practice.
It's just too intrusive; and again, requires knowledge duplication.
.. but no. The solution lies right on the ground.
Why don't we simply store this `i'm a openmp structured block` in the bitfield of the `Stmt` itself?
This does not appear to have any impact on the memory footprint of the clang AST,
since it's just a single extra bit in the bitfield. At least the static assertions don't fail.
Thus, indeed, we can achieve both of the properties without a new AST node.
We can cheaply set that bit right in sema, at the end of `Sema::ActOnOpenMPExecutableDirective()`,
by just calling the `getStructuredBlock()` that we just added.
Test coverage that demonstrates all this has been added.
This isn't as great with serialization though. Most of it does not use abbrevs,
so we do end up paying the full price (4 bytes?) instead of a single bit.
That price, of course, can be reclaimed by using abbrevs.
In fact, i suspect that //might// not just reclaim these bytes, but pack these PCH significantly.
I'm not seeing a third solution. If there is one, it would be interesting to hear about it.
("just don't write code that would require `isa<OMPStructuredBlock>(ptr)`" is not a solution.)
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40563 | PR40563 ]].
Reviewers: ABataev, rjmccall, hfinkel, rsmith, riccibruno, gribozavr
Reviewed By: ABataev, gribozavr
Subscribers: mgorny, aaron.ballman, steveire, guansong, jfb, jdoerfert, cfe-commits
Tags: #clang, #openmp
Differential Revision: https://reviews.llvm.org/D59214
llvm-svn: 356570
initializes a local auto variable or is assigned to a local auto
variable that is declared in the scope that introduced the block
literal.
rdar://problem/13289333
https://reviews.llvm.org/D58514
llvm-svn: 355012
Summary:
r347205 fixed a bug in FileManager: first calling
getFile(shouldOpen=false) and then getFile(shouldOpen=true) results in
the file not being open.
Unfortunately, some code was (inadvertently?) relying on this bug: when
building with a PCH, the file entries are obtained first by passing
shouldOpen=false, and then later shouldOpen=true, without any intention
of reading them. After r347205, they do get unneccesarily opened.
Aside from extra operations, this means they need to be closed. Normally
files are closed when their contents are read. As these files are never
read, they stay open until clang exits. On platforms with a low
open-files limit (e.g. Mac), this can lead to spurious file-not-found
errors when building large projects with PCH enabled, e.g.
https://bugs.chromium.org/p/chromium/issues/detail?id=924225
Fixing the callsites to pass shouldOpen=false when the file won't be
read is not quite trivial (that info isn't available at the direct
callsite), and passing shouldOpen=false is a performance regression (it
results in open+fstat pairs being replaced by stat+open).
So an ideal fix is going to be a little risky and we need some fix soon
(especially for the llvm 8 branch).
The problem addressed by r347205 is rare and has only been observed in
clangd. It was present in llvm-7, so we can live with it for now.
Reviewers: bkramer, thakis
Subscribers: ilya-biryukov, ioeric, kadircet, cfe-commits
Differential Revision: https://reviews.llvm.org/D57165
llvm-svn: 352079
for the DICompileUnit.
This addresses post-commit feedback for D55085. Without this patch, a
main source file with an absolute paths may appear in different
DIFiles, once with the absolute path and once with the common prefix
between the absolute path and the current working directory.
Differential Revision: https://reviews.llvm.org/D55519
llvm-svn: 348865
When debugging a boost build with a modified
version of Clang, I discovered that the PTH implementation
stores TokenKind in 8 bits. However, we currently have 368
TokenKinds.
The result is that the value gets truncated and the wrong token
gets picked up when including PTH files. It seems that this will
go wrong every time someone uses a token that uses the 9th bit.
Upon asking on IRC, it was brought up that this was a highly
experimental features that was considered a failure. I discovered
via googling that BoostBuild (mostly Boost.Math) is the only user of
this
feature, using the CC1 flag directly. I believe that this can be
transferred over to normal PCH with minimal effort:
https://github.com/boostorg/build/issues/367
Based on advice on IRC and research showing that this is a nearly
completely unused feature, this patch removes it entirely.
Note: I considered leaving the build-flags in place and making them
emit an error/warning, however since I've basically identified and
warned the only user, it seemed better to just remove them.
Differential Revision: https://reviews.llvm.org/D54547
Change-Id: If32744275ef1f585357bd6c1c813d96973c4d8d9
llvm-svn: 348266
from those that aren't.
This patch changes the way __block variables that aren't captured by
escaping blocks are handled:
- Since non-escaping blocks on the stack never get copied to the heap
(see https://reviews.llvm.org/D49303), Sema shouldn't error out when
the type of a non-escaping __block variable doesn't have an accessible
copy constructor.
- IRGen doesn't have to use the specialized byref structure (see
https://clang.llvm.org/docs/Block-ABI-Apple.html#id8) for a
non-escaping __block variable anymore. Instead IRGen can emit the
variable as a normal variable and copy the reference to the block
literal. Byref copy/dispose helpers aren't needed either.
This reapplies r343518 after fixing a use-after-free bug in function
Sema::ActOnBlockStmtExpr where the BlockScopeInfo was dereferenced after
it was popped and deleted.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D51564
llvm-svn: 343542
from those that aren't.
This patch changes the way __block variables that aren't captured by
escaping blocks are handled:
- Since non-escaping blocks on the stack never get copied to the heap
(see https://reviews.llvm.org/D49303), Sema shouldn't error out when
the type of a non-escaping __block variable doesn't have an accessible
copy constructor.
- IRGen doesn't have to use the specialized byref structure (see
https://clang.llvm.org/docs/Block-ABI-Apple.html#id8) for a
non-escaping __block variable anymore. Instead IRGen can emit the
variable as a normal variable and copy the reference to the block
literal. Byref copy/dispose helpers aren't needed either.
This reapplies r341754, which was reverted in r341757 because it broke a
couple of bots. r341754 was calling markEscapingByrefs after the call to
PopFunctionScopeInfo, which caused the popped function scope to be
cleared out when the following code was compiled, for example:
$ cat test.m
struct A {
id data[10];
};
void foo() {
__block A v;
^{ (void)v; };
}
This commit calls markEscapingByrefs before calling PopFunctionScopeInfo
to prevent that from happening.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D51564
llvm-svn: 343518
With clang-cl, when the user specifies /Yc or /Yu without a filename
the compiler uses a #pragma hdrstop in the main source file to
determine the end of the PCH. If a header is specified with /Yc or
/Yu #pragma hdrstop has no effect.
The optional #pragma hdrstop filename argument is not yet supported.
Differential Revision: https://reviews.llvm.org/D51391
llvm-svn: 341963
from those that aren't.
This patch changes the way __block variables that aren't captured by
escaping blocks are handled:
- Since non-escaping blocks on the stack never get copied to the heap
(see https://reviews.llvm.org/D49303), Sema shouldn't error out when
the type of a non-escaping __block variable doesn't have an accessible
copy constructor.
- IRGen doesn't have to use the specialized byref structure (see
https://clang.llvm.org/docs/Block-ABI-Apple.html#id8) for a
non-escaping __block variable anymore. Instead IRGen can emit the
variable as a normal variable and copy the reference to the block
literal. Byref copy/dispose helpers aren't needed either.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D51564
llvm-svn: 341754
expression
Clang emits invalid protocol metadata when a @protocol expression is used with a
forward-declared protocol. The protocol metadata is missing protocol conformance
list of the protocol since we don't have access to the definition of it in the
compiled translation unit. The linker then might end up picking the invalid
metadata when linking which will lead to incorrect runtime protocol conformance
checks.
This commit makes sure that Clang fails to compile code that uses a @protocol
expression with a forward-declared protocol. This ensures that Clang does not
emit invalid protocol metadata. I added an extra assert in CodeGen to ensure
that this kind of issue won't happen in other places.
rdar://32787811
Differential Revision: https://reviews.llvm.org/D49462
llvm-svn: 340102
This clang-cl driver change removes the PCH options when we are only generating
preprocessed output. This is similar to the behavior of Y-.
Patch by: mikerice
Differential Revision: https://reviews.llvm.org/D50640
llvm-svn: 340025
Clang generates copy and dispose helper functions for each block literal
on the stack. Often these functions are equivalent for different blocks.
This commit makes changes to merge equivalent copy and dispose helper
functions and reduce code size.
To enable merging equivalent copy/dispose functions, the captured object
infomation is encoded into the helper function name. This allows IRGen
to check whether an equivalent helper function has already been emitted
and reuse the function instead of generating a new helper function
whenever a block is defined. In addition, the helper functions are
marked as linkonce_odr to enable merging helper functions that have the
same name across translation units and marked as unnamed_addr to enable
the linker's deduplication pass to merge functions that have different
names but the same content.
rdar://problem/42640608
Differential Revision: https://reviews.llvm.org/D50152
llvm-svn: 339438
Summary:
InMemoryFileSystem::status behaves differently than
RealFileSystem::status. The Name contained in the Status returned by
RealFileSystem::status will be the path as requested by the caller,
whereas InMemoryFileSystem::status returns the normalized path.
For example, when requested the status for "../src/first.h",
RealFileSystem returns a Status with "../src/first.h" as the Name.
InMemoryFileSystem returns "/absolute/path/to/src/first.h".
The reason for this change is that I want to make a unit test in the
clangd testsuite (where we use an InMemoryFileSystem) to reproduce a
bug I get with the clangd program (where a RealFileSystem is used).
This difference in behavior "hides" the bug in the unit test version.
An indirect impact of this change is that a -Wnonportable-include-path
warning is now emitted in test PCH/case-insensitive-include.c. This is
because the real path of the included file (with the wrong case) was not
available previously, whereas it is now.
Reviewers: malaperle, ilya-biryukov, bkramer
Reviewed By: ilya-biryukov
Subscribers: eric_niebler, malaperle, omtcyfz, hokein, bkramer, ilya-biryukov, ioeric, cfe-commits
Differential Revision: https://reviews.llvm.org/D48903
llvm-svn: 339063
Recommit of r335084 after revert in r335516.
... instead of prepending it at the beginning (the original behavior
since implemented in r122535 2010-12-23). This builds up an
AttributeList in the the order in which the attributes appear in the
source.
The reverse order caused nodes for attributes in the AST (e.g. LoopHint)
to be in the reverse order, and therefore printed in the wrong order in
-ast-dump. Some TODO comments mention this. The order was explicitly
reversed for enable_if attribute overload resolution and name mangling,
which is not necessary anymore with this patch.
The change unfortunately has some secondary effect, especially on
diagnostic output. In the simplest cases, the CHECK lines or expected
diagnostic were changed to the the new output. If the kind of
error/warning changed, the attributes' order was changed instead.
This unfortunately causes some 'previous occurrence here' hints to be
textually after the main marker. This typically happens when attributes
are merged, but are incompatible to each other. Interchanging the role
of the the main and note SourceLocation will also cause the case where
two different declaration's attributes (in contrast to multiple
attributes of the same declaration) are merged to be reverse. There is
no easy fix because sometimes previous attributes are merged into a new
declaration's attribute list, sometimes new attributes are added to a
previous declaration's attribute list. Since 'previous occurrence here'
pointing to locations after the main marker is not rare, I left the
markers as-is; it is only relevant when the attributes are declared in
the same declaration anyway.
Differential Revision: https://reviews.llvm.org/D48100
llvm-svn: 338800
parameters can have default arguments.
At least for function templates and class template partial
specializations, it's possible for a template parameter with a default
argument to be followed by a non-pack template parameter with no default
argument, and this case was not properly handled here.
Testcase by Steve O'Brien!
llvm-svn: 338438
Fix "Invalid operator call kind" error (llvm_unreachable) in
DecodeOperatorCall when profiling a dependent co_await.
Patch by Victor Zverovich!
Differential Revision: https://reviews.llvm.org/D50002
llvm-svn: 338343
Summary:
As discussed in [[ https://bugs.llvm.org/show_bug.cgi?id=38166 | PR38166 ]], we need to be able to distinqush whether the cast
we are visiting is actually a cast, or part of an `ExplicitCast`.
There are at least four ways to get there:
1. Introduce a new `CastKind`, and use it instead of `IntegralCast` if we are in `ExplicitCast`.
Would work, but does not scale - what if we will need more of these cast kinds?
2. Introduce a flag in `CastExprBits`, whether this cast is part of `ExplicitCast` or not.
Would work, but it isn't immediately clear where it needs to be set.
2. Fix `ScalarExprEmitter::VisitCastExpr()` to visit these `NoOp` casts.
As pointed out by @rsmith, CodeGenFunction::EmitMaterializeTemporaryExpr calls
skipRValueSubobjectAdjustments, which steps over the CK_NoOp cast`,
which explains why we currently don't visit those.
This is probably impossible, as @efriedma points out, that is intentional as per `[class.temporary]` in the standard
3. And the simplest one, just record which NoOp casts we skip.
It just kinda works as-is afterwards.
But, the approach with a flag is the least intrusive one, and is probably the best one overall.
Reviewers: rsmith, rjmccall, majnemer, efriedma
Reviewed By: rsmith
Subscribers: cfe-commits, aaron.ballman, vsk, llvm-commits, rsmith
Differential Revision: https://reviews.llvm.org/D49508
llvm-svn: 337815
... instead of prepending it at the beginning (the original behavior
since implemented in r122535 2010-12-23). This builds up an
AttributeList in the the order in which the attributes appear in the
source.
The reverse order caused nodes for attributes in the AST (e.g. LoopHint)
to be in the reverse, and therefore printed in the wrong order by
-ast-dump. Some TODO comments mention this. The order was explicitly
reversed for enable_if attribute overload resolution and name mangling,
which is not necessary anymore with this patch.
The change unfortunately has some secondary effects, especially for
diagnostic output. In the simplest cases, the CHECK lines or expected
diagnostic were changed to the the new output. If the kind of
error/warning changed, the attribute's order was changed instead.
It also causes some 'previous occurrence here' hints to be textually
after the main marker. This typically happens when attributes are
merged, but are incompatible. Interchanging the role of the the main
and note SourceLocation will also cause the case where two different
declaration's attributes (in contrast to multiple attributes of the
same declaration) are merged to be reversed. There is no easy fix
because sometimes previous attributes are merged into a new
declaration's attribute list, sometimes new attributes are added to a
previous declaration's attribute list. Since 'previous occurrence here'
pointing to locations after the main marker is not rare, I left the
markers as-is; it is only relevant when the attributes are declared in
the same declaration anyway, which often is on the same line.
Differential Revision: https://reviews.llvm.org/D48100
llvm-svn: 335084
This reapplies r334224 and adds explicit triples to some tests to fix
them on Windows (where otherwise they would have run with the default
windows-msvc triple, which I'm changing the behavior for).
Original commit message:
The body of a `@finally` needs to be executed on both exceptional and
non-exceptional paths. On landingpad platforms, this is straightforward:
the `@finally` body is emitted as a normal (non-exceptional) cleanup,
and then a catch-all is emitted which branches to that cleanup (the
cleanup has code to conditionally re-throw based on a flag which is set
by the catch-all).
Unfortunately, we can't use the same approach for MSVC exceptions, where
the catch-all will be emitted as a catchpad. We can't just branch to the
cleanup from within the catchpad, since we can only exit it via a
catchret, at which point the exception is destroyed and we can't
rethrow. We could potentially emit the finally body inside the catchpad
and have the normal cleanup path somehow branch into it, but that would
require some new IR construct that could branch into a catchpad.
Instead, after discussing it with Reid Kleckner, we decided that
frontend outlining was the best approach, similar to how SEH `__finally`
works today. We decided to use CapturedStmt (which was also suggested by
Reid) rather than CaptureFinder (which is what `__finally` uses) since
the latter doesn't handle a lot of cases we care about, e.g. self
accesses, property accesses, block captures, etc. Extending
CaptureFinder to handle those additional cases proved unwieldy, whereas
CapturedStmt already took care of all of those. In theory `__finally`
could also be moved over to CapturedStmt, which would remove some
existing limitations (e.g. the inability to capture this), although
CaptureFinder would still be needed for SEH filters.
The one case supported by `@finally` but not CapturedStmt (or
CaptureFinder for that matter) is arbitrary control flow out of the
`@finally`, e.g. having a return statement inside a `@finally`. We can
add that support as a follow-up, but in practice we've found it to be
used very rarely anyway.
Differential Revision: https://reviews.llvm.org/D47564
llvm-svn: 334251
Summary:
This patch tackles long hanging fruit for the builtin operator<=> expressions. It is currently needs some cleanup before landing, but I want to get some initial feedback.
The main changes are:
* Lookup, build, and store the required standard library types and expressions in `ASTContext`. By storing them in ASTContext we don't need to store (and duplicate) the required expressions in the BinaryOperator AST nodes.
* Implement [expr.spaceship] checking, including diagnosing narrowing conversions.
* Implement `ExprConstant` for builtin spaceship operators.
* Implement builitin operator<=> support in `CodeGenAgg`. Initially I emitted the required comparisons using `ScalarExprEmitter::VisitBinaryOperator`, but this caused the operand expressions to be emitted once for every required cmp.
* Implement [builtin.over] with modifications to support the intent of P0946R0. See the note on `BuiltinOperatorOverloadBuilder::addThreeWayArithmeticOverloads` for more information about the workaround.
Reviewers: rsmith, aaron.ballman, majnemer, rnk, compnerd, rjmccall
Reviewed By: rjmccall
Subscribers: rjmccall, rsmith, aaron.ballman, junbuml, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D45476
llvm-svn: 331677
Summary:
This fixes PR33561 and PR34185.
Don't store pending template instantiations for late-parsed templates in
the normal PendingInstantiations queue. Instead, use a separate list
that will only be parsed and instantiated at end of TU when late
template parsing actually works and doesn't infinite loop.
Reviewers: rsmith, thakis, hans
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D44846
llvm-svn: 328567
This is the next step in setting dso_local for COFF.
The patches changes setGVProperties to first set dllimport/dllexport
and changes a few cases that were setting dllimport/dllexport
manually. With this a few more GVs are marked dso_local.
llvm-svn: 326397
The tests that failed on a windows host have been fixed.
Original message:
Start setting dso_local for COFF.
With this there are still some GVs where we don't set dso_local
because setGVProperties is never called. I intend to fix that in
followup commits. This is just the bare minimum to teach
shouldAssumeDSOLocal what it should do for COFF.
llvm-svn: 325940
With this there are still some GVs where we don't set dso_local
because setGVProperties is never called. I intend to fix that in
followup commits. This is just the bare minimum to teach
shouldAssumeDSOLocal what it should do for COFF.
llvm-svn: 325915
Summary:
-ast-print prints omp pragmas with a trailing space. While this
behavior is likely of little concern to most users, surely it's
unintentional, and it's annoying for some source-level work I'm
pursuing. This patch focuses on omp pragmas, but it also fixes
init_seg and loop hint pragmas because they share implementation.
The testing strategy here is to add usually just one '{{$}}' per
relevant -ast-print test file. This seems to achieve good code
coverage. However, this strategy is probably easy to forget as the
tests evolve. That's probably fine as this fix is far from critical.
The main goal of the testing is to aid the initial review.
This patch also adds a fixme for "#pragma unroll", which prints as
"#pragma unroll (enable)", which is invalid syntax.
Reviewers: ABataev
Reviewed By: ABataev
Subscribers: guansong, cfe-commits
Differential Revision: https://reviews.llvm.org/D43204
llvm-svn: 325145
The current code would hit an assert in ASTWriter when trying to write
out the filename for a line table entry that didn't have any. Fix this
by allowing the -1 sentinel value to round-trip through serialization.
Differential revision: https://reviews.llvm.org/D40746
llvm-svn: 319707
If a function or variable has a type with no linkage (and is not extern "C"),
any use of it requires a definition within the same translation unit; the idea
is that it is not possible to define the entity elsewhere, so any such use is
necessarily an error.
There is an exception, though: some types formally have no linkage but
nonetheless can be referenced from other translation units (for example, this
happens to anonymous structures defined within inline functions). For entities
with those types, we suppress the diagnostic except under -pedantic.
llvm-svn: 313729
The %T lit expansion expands to a common directory shared between all the tests in the same directory, which is unexpected and unintuitive, and more importantly, it's been a source of subtle race conditions and flaky tests. In https://reviews.llvm.org/D35396, it was agreed that it would be best to simply ban %T and only keep %t, which is unique to each test. When a test needs a temporary directory, it can just create one using mkdir %t.
This patch removes %T in clang.
Differential Revision: https://reviews.llvm.org/D36437
llvm-svn: 310950
'#pragma pack (pop)' and suspicious uses of '#pragma pack' in included files
The second recommit (r309106) was reverted because the "non-default #pragma
pack value chages the alignment of struct or union members in the included file"
warning proved to be too aggressive for external projects like Chromium
(https://bugs.chromium.org/p/chromium/issues/detail?id=749197). This recommit
makes the problematic warning a non-default one, and gives it the
-Wpragma-pack-suspicious-include warning option.
The first recommit (r308441) caused a "non-default #pragma pack value might
change the alignment of struct or union members in the included file" warning
in LLVM itself. This recommit tweaks the added warning to avoid warnings for
#includes that don't have any records that are affected by the non-default
alignment. This tweak avoids the previously emitted warning in LLVM.
Original message:
This commit adds a new -Wpragma-pack warning. It warns in the following cases:
- When a translation unit is missing terminating #pragma pack (pop) directives.
- When entering an included file if the current alignment value as determined
by '#pragma pack' directives is different from the default alignment value.
- When leaving an included file that changed the state of the current alignment
value.
rdar://10184173
Differential Revision: https://reviews.llvm.org/D35484
llvm-svn: 309386
The warning fires on non-suspicious code in Chromium. Reverting until a
solution is figured out.
> Recommit r308327 2nd time: Add a warning for missing
> '#pragma pack (pop)' and suspicious uses of '#pragma pack' in included files
>
> The first recommit (r308441) caused a "non-default #pragma pack value might
> change the alignment of struct or union members in the included file" warning
> in LLVM itself. This recommit tweaks the added warning to avoid warnings for
> #includes that don't have any records that are affected by the non-default
> alignment. This tweak avoids the previously emitted warning in LLVM.
>
> Original message:
>
> This commit adds a new -Wpragma-pack warning. It warns in the following cases:
>
> - When a translation unit is missing terminating #pragma pack (pop) directives.
> - When entering an included file if the current alignment value as determined
> by '#pragma pack' directives is different from the default alignment value.
> - When leaving an included file that changed the state of the current alignment
> value.
>
> rdar://10184173
>
> Differential Revision: https://reviews.llvm.org/D35484
llvm-svn: 309186
'#pragma pack (pop)' and suspicious uses of '#pragma pack' in included files
The first recommit (r308441) caused a "non-default #pragma pack value might
change the alignment of struct or union members in the included file" warning
in LLVM itself. This recommit tweaks the added warning to avoid warnings for
#includes that don't have any records that are affected by the non-default
alignment. This tweak avoids the previously emitted warning in LLVM.
Original message:
This commit adds a new -Wpragma-pack warning. It warns in the following cases:
- When a translation unit is missing terminating #pragma pack (pop) directives.
- When entering an included file if the current alignment value as determined
by '#pragma pack' directives is different from the default alignment value.
- When leaving an included file that changed the state of the current alignment
value.
rdar://10184173
Differential Revision: https://reviews.llvm.org/D35484
llvm-svn: 309106
This seems to have broken the sanitizer-x86_64-linux buildbot. Reverting until
it's fixed, especially since this landed just before the 5.0 branch.
> This commit adds a new -Wpragma-pack warning. It warns in the following cases:
>
> - When a translation unit is missing terminating #pragma pack (pop) directives.
> - When entering an included file if the current alignment value as determined
> by '#pragma pack' directives is different from the default alignment value.
> - When leaving an included file that changed the state of the current alignment
> value.
>
> rdar://10184173
>
> Differential Revision: https://reviews.llvm.org/D35484
llvm-svn: 308455
and suspicious uses of '#pragma pack' in included files
This commit adds a new -Wpragma-pack warning. It warns in the following cases:
- When a translation unit is missing terminating #pragma pack (pop) directives.
- When entering an included file if the current alignment value as determined
by '#pragma pack' directives is different from the default alignment value.
- When leaving an included file that changed the state of the current alignment
value.
rdar://10184173
Differential Revision: https://reviews.llvm.org/D35484
llvm-svn: 308441
of '#pragma pack' in included files
This commit adds a new -Wpragma-pack warning. It warns in the following cases:
- When a translation unit is missing terminating #pragma pack (pop) directives.
- When entering an included file if the current alignment value as determined
by '#pragma pack' directives is different from the default alignment value.
- When leaving an included file that changed the state of the current alignment
value.
rdar://10184173
Differential Revision: https://reviews.llvm.org/D35484
llvm-svn: 308327
This patch extends the `overloadable` attribute to allow for one
function with a given name to not be marked with the `overloadable`
attribute. The overload without the `overloadable` attribute will not
have its name mangled.
So, the following code is now legal:
void foo(void) __attribute__((overloadable));
void foo(int);
void foo(float) __attribute__((overloadable));
In addition, this patch fixes a bug where we'd accept code with
`__attribute__((overloadable))` inconsistently applied. In other words,
we used to accept:
void foo(void);
void foo(void) __attribute__((overloadable));
But we will do this no longer, since it defeats the original purpose of
requiring `__attribute__((overloadable))` on all redeclarations of a
function.
This breakage seems to not be an issue in practice, since the only code
I could find that had this pattern often looked like:
void foo(void);
void foo(void) __attribute__((overloadable)) __asm__("foo");
void foo(int) __attribute__((overloadable));
...Which can now be simplified by simply removing the asm label and
overloadable attribute from the redeclaration of `void foo(void);`
Differential Revision: https://reviews.llvm.org/D32332
llvm-svn: 306467
This improves our behavior in a few ways:
* We now guarantee that if a member is marked as being a member
specialization, there will actually be a member specialization declaration
somewhere on its redeclaration chain. This fixes a crash in modules builds
where we would try to check that there was a visible declaration of the
member specialization and be surprised to not find any declaration of it at
all.
* We don't set the source location of the in-class declaration of the member
specialization to the out-of-line declaration's location until we have
actually finished merging them. This fixes some very silly looking
diagnostics, where we'd point a "previous declaration is here" note at the
same declaration we're complaining about. Ideally we wouldn't mess with the
prior declaration's location at all, but too much code assumes that the
first declaration of an entity is a reasonable thing to use as an indication
of where it was declared, and that's not really true for a member
specialization unless we fake it like this.
llvm-svn: 302596
This patch serializes the state of #pragma pack. It preserves the state of the
pragma from a PCH/from modules in a file that uses that PCH/those modules.
rdar://21359084
Differential Revision: https://reviews.llvm.org/D31241
llvm-svn: 299226
Summary:
When a PCH is included via -include-pch, clang should treat the
current TU as dependent on the sourcefile that the PCH was generated from.
This is currently _partly_ accomplished by InitializePreprocessor calling
AddImplicitIncludePCH to synthesize an implicit #include of the sourcefile,
into the preprocessor's Predefines buffer.
For FrontendActions such as PreprocessOnlyAction (which is, curiously, what the
driver winds up running one of in response to a plain clang -M) this is
sufficient: the preprocessor cranks over its Predefines and emits a dependency
reference to the initial sourcefile.
For other FrontendActions (for example -emit-obj or -fsyntax-only) the
Predefines buffer is reset to the suggested predefines buffer from the PCH, so
the dependency edge is lost. The result is that clang emits a .d file in those
cases that lacks a reference to the .h file responsible for the input (and in
Swift's case, our .swiftdeps file winds up not including a reference to the
source file for a PCH bridging header.)
This patch fixes the problem by taking a different tack: ignoring the
Predefines buffer (which seems a bit like a hack anyways) and directly
attaching the CompilerInstance's DependencyCollectors (and legacy
DependencyFileGenerator) to the ASTReader for the external AST.
This approach is similar to the one chosen in earlier consultation with Bruno
and Ben, and I think it's the least-bad solution, given several options.
Reviewers: bruno, benlangmuir, doug.gregor
Reviewed By: bruno, doug.gregor
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31378
llvm-svn: 299009
This is a stopgap fix for PR31863, a regression introduced in r276159.
Consider this snippet:
struct FVector;
struct FVector {};
struct FBox {
FVector Min;
FBox(int);
};
namespace {
FBox InvalidBoundingBox(0);
}
While parsing the DECL_VAR for 'struct FBox', clang recursively read all the
dep decls until it finds the DECL_CXX_RECORD forward declaration for 'struct
FVector'. Then, it resumes all the way up back to DECL_VAR handling in
`ReadDeclRecord`, where it checks if `isConsumerInterestedIn` for the decl.
One of the condition for `isConsumerInterestedIn` to return false is if the
VarDecl is imported from a module `D->getImportedOwningModule()`, because it
will get emitted when we import the relevant module. However, before checking
if it comes from a module, clang checks if `Ctx.DeclMustBeEmitted(D)`, which
triggers the emission of 'struct FBox'. Since one of its fields is still
incomplete, it crashes.
Instead, check if `D->getImportedOwningModule()` is true before calling
`Ctx.DeclMustBeEmitted(D)`.
Differential Revision: https://reviews.llvm.org/D29753
rdar://problem/30173654
llvm-svn: 296656
Removed ndrange_t as Clang builtin type and added
as a struct type in the OpenCL header.
Use type name to do the Sema checking in enqueue_kernel
and modify IR generation accordingly.
Review: D28058
Patch by Dmitry Borisenkov!
llvm-svn: 295311
-fno-inline-functions, -O0, and optnone.
These were really, really tangled together:
- We used the noinline LLVM attribute for -fno-inline
- But not for -fno-inline-functions (breaking LTO)
- But we did use it for -finline-hint-functions (yay, LTO is happy!)
- But we didn't for -O0 (LTO is sad yet again...)
- We had weird structuring of CodeGenOpts with both an inlining
enumeration and a boolean. They interacted in weird ways and
needlessly.
- A *lot* of set smashing went on with setting these, and then got worse
when we considered optnone and other inlining-effecting attributes.
- A bunch of inline affecting attributes were managed in a completely
different place from -fno-inline.
- Even with -fno-inline we failed to put the LLVM noinline attribute
onto many generated function definitions because they didn't show up
as AST-level functions.
- If you passed -O0 but -finline-functions we would run the normal
inliner pass in LLVM despite it being in the O0 pipeline, which really
doesn't make much sense.
- Lastly, we used things like '-fno-inline' to manipulate the pass
pipeline which forced the pass pipeline to be much more
parameterizable than it really needs to be. Instead we can *just* use
the optimization level to select a pipeline and control the rest via
attributes.
Sadly, this causes a bunch of churn in tests because we don't run the
optimizer in the tests and check the contents of attribute sets. It
would be awesome if attribute sets were a bit more FileCheck friendly,
but oh well.
I think this is a significant improvement and should remove the semantic
need to change what inliner pass we run in order to comply with the
requested inlining semantics by relying completely on attributes. It
also cleans up tho optnone and related handling a bit.
One unfortunate aspect of this is that for generating alwaysinline
routines like those in OpenMP we end up removing noinline and then
adding alwaysinline. I tried a bunch of other approaches, but because we
recompute function attributes from scratch and don't have a declaration
here I couldn't find anything substantially cleaner than this.
Differential Revision: https://reviews.llvm.org/D28053
llvm-svn: 290398
This change introduces UsingPackDecl as a marker for the set of UsingDecls
produced by pack expansion of a single (unresolved) using declaration. This is
not strictly necessary (we just need to be able to map from the original using
declaration to its expansions somehow), but it's useful to maintain the
invariant that each declaration reference instantiates to refer to one
declaration.
This is a re-commit of r290080 (reverted in r290092) with a fix for a
use-after-lifetime bug.
llvm-svn: 290203
This change introduces UsingPackDecl as a marker for the set of UsingDecls
produced by pack expansion of a single (unresolved) using declaration. This is
not strictly necessary (we just need to be able to map from the original using
declaration to its expansions somehow), but it's useful to maintain the
invariant that each declaration reference instantiates to refer to one
declaration.
llvm-svn: 290080
The test requests a target which supports cl_khr_gl_msaa_sharing since in test/PCH/ocl_types.h
it tries to enable cl_khr_gl_msaa_sharing. Therefore this test fails on targets not supporting
cl_khr_gl_msaa_sharing, e.g. ppc64, etc.
The fix is to add triple spir-unknown-unknown which supports cl_khr_gl_msaa_sharing.
llvm-svn: 290059
PCH files store the macro history for a given macro, and the whole history list
for one identifier is given to the Preprocessor at once via
Preprocessor::setLoadedMacroDirective(). This contained an assert that no macro
history exists yet for that identifier. That's usually true, but it's not true
for builtin macros, which are created in Preprocessor() before flags and pchs
are processed. Luckily, ASTWriter stops writing macro history lists at builtins
(see shouldIgnoreMacro() in ASTWriter.cpp), so the head of the history list was
missing for builtin macros. So make the assert weaker, and splice the history
list to the existing single define for builtins.
https://reviews.llvm.org/D27545
llvm-svn: 289228
This saves two pointers from FunctionDecl that were being used for some
rare and questionable C-only functionality. The DeclsInPrototypeScope
ArrayRef was added in r151712 in order to parse this kind of C code:
enum e {x, y};
int f(enum {y, x} n) {
return x; // should return 1, not 0
}
The challenge is that we parse 'int f(enum {y, x} n)' it its own
function prototype scope that gets popped before we build the
FunctionDecl for 'f'. The original change was doing two questionable
things:
1. Saving all tag decls introduced in prototype scope on a TU-global
Sema variable. This is problematic when you have cases like this, where
'x' and 'y' shouldn't be visible in 'f':
void f(void (*fp)(enum { x, y } e)) { /* no x */ }
This patch fixes that, so now 'f' can't see 'x', which is consistent
with GCC.
2. Storing the decls in FunctionDecl in ActOnFunctionDeclarator so that
they could be used in ActOnStartOfFunctionDef. This is just an
inefficient way to move information around. The AST lives forever, but
the list of non-parameter decls in prototype scope is short lived.
Moving these things to the Declarator solves both of these issues.
Reviewers: rsmith
Subscribers: jmolloy, cfe-commits
Differential Revision: https://reviews.llvm.org/D27279
llvm-svn: 289225
Tests fall into one of the following categories:
- The requirement was unnecessary
- Additional quoting was required for backslashes in paths (see "sed -e
's/\\/\\\\/g'") in the sanitizer tests.
- OpenMP used 'REQUIRES: shell' as a proxy for the test failing on
Windows. Those tests fail there reliably, so use XFAIL instead.
I tried not to remove shell requirements that were added to suppress
flaky test failures, but if I screwed up, we can add it back as needed.
llvm-svn: 284793
Summary:
Previously we had to split out a lot of our tests into a test that
checked only immediate errors and a test that checked only deferred
errors. This was because, if you emitted any immediate errors, we
wouldn't run codegen, where the deferred errors were emitted.
We've fixed this, and now emit deferred errors during sema. This lets
us merge a bunch of tests, and lets us convert some other tests to
-fsyntax-only.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D25755
llvm-svn: 284553
Summary:
These cause us to consider all functions in-between to be __host__
__device__.
You can nest these pragmas; you just can't have more 'end's than
'begin's.
Reviewers: rsmith
Subscribers: tra, jhen, cfe-commits
Differential Revision: https://reviews.llvm.org/D24975
llvm-svn: 283677
There is a bug causing pch to be validated even though -fno-validate-pch is set. This patch fixes it.
ASTReader relies on ASTReaderListener to initialize SuggestedPredefines, which is required for compilations using PCH. Before this change, PCHValidator is the default ASTReaderListener. After this change, when -fno-validate-pch is set, PCHValidator is disabled, but we need a replacement ASTReaderListener to initialize SuggestedPredefines. Class SimpleASTReaderListener is implemented for this purpose.
This change only affects -fno-validate-pch. There is no functional change if -fno-validate-pch is not set.
If -fno-validate-pch is not set, conflicts in predefined macros between pch and current compiler instance causes error.
If -fno-validate-pch is set, predefine macros in current compiler override those in pch so that compilation can continue.
Differential Revision: https://reviews.llvm.org/D24054
llvm-svn: 280842
The '#pragma once' directive was erroneously ignored when encountered
in the header-file specified in generate-PCH-mode. This resulted in
compile-time errors in some cases with legal code, and also a misleading
warning being produced.
Patch by Warren Ristow!
Differential Revision: http://reviews.llvm.org/D19815
llvm-svn: 276653