Commit Graph

15 Commits

Author SHA1 Message Date
Dávid Bolvanský 0f14b2e6cb Revert "[BPI] Improve static heuristics for integer comparisons"
This reverts commit 50c743fa71. Patch will be split to smaller ones.
2020-08-17 20:44:33 +02:00
Dávid Bolvanský 50c743fa71 [BPI] Improve static heuristics for integer comparisons
Similarly as for pointers, even for integers a == b is usually false.

GCC also uses this heuristic.

Reviewed By: ebrevnov

Differential Revision: https://reviews.llvm.org/D85781
2020-08-13 19:54:27 +02:00
Dávid Bolvanský f9264995a6 Revert "[BPI] Improve static heuristics for integer comparisons"
This reverts commit 44587e2f7e. Sanitizer tests need to be updated.
2020-08-13 14:37:40 +02:00
Dávid Bolvanský 44587e2f7e [BPI] Improve static heuristics for integer comparisons
Similarly as for pointers, even for integers a == b is usually false.

GCC also uses this heuristic.

Reviewed By: ebrevnov

Differential Revision: https://reviews.llvm.org/D85781
2020-08-13 14:23:58 +02:00
Dávid Bolvanský a0485421d2 Revert "[BPI] Improve static heuristics for integer comparisons"
This reverts commit 385c9d673f.
2020-08-13 12:59:15 +02:00
Dávid Bolvanský 385c9d673f [BPI] Improve static heuristics for integer comparisons
Similarly as for pointers, even for integers a == b is usually false.

GCC also uses this heuristic.

Reviewed By: ebrevnov

Differential Revision: https://reviews.llvm.org/D85781
2020-08-13 12:45:40 +02:00
Artur Pilipenko 4d063e7bb1 [BPI] Apply invoke heuristic before loop branch heuristic
Currently the loop branch heuristic is applied before the invoke heuristic which makes us overestimate the probability of the unwind destination of invokes inside loops. This in turn makes us grossly underestimate the frequencies of loops with invokes.

Reviewed By: skatkov, vsk

Differential Revision: https://reviews.llvm.org/D47371

llvm-svn: 334285
2018-06-08 13:03:21 +00:00
John Brawn 29bbed3613 [BPI] Detect branches in loops that make themselves not taken
If we have a loop like this:
 int n = 0;
 while (...) {
  if (++n >= MAX) {
    n = 0;
  }
 }
then the body of the 'if' statement will only be executed once every MAX
iterations. Detect this by looking for branches in loops where taking the branch
makes the branch condition evaluate to 'not taken' in the next iteration of the
loop, and reduce the probability of such branches.

This slightly improves EEMBC benchmarks on cortex-m4/cortex-m33 due to making
better choices in if-conversion, but has no effect on any other cpu/benchmark
that I could detect.

Differential Revision: https://reviews.llvm.org/D35804

llvm-svn: 325925
2018-02-23 17:17:31 +00:00
Geoff Berry eed6531ea2 [BranchProbabilityInfo] Handle irreducible loops.
Summary:
Compute the strongly connected components of the CFG and fall back to
use these for blocks that are in loops that are not detected by
LoopInfo when computing loop back-edge and exit branch probabilities.

Reviewers: dexonsmith, davidxl

Subscribers: mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D39385

llvm-svn: 317094
2017-11-01 15:16:50 +00:00
Xinliang David Li 6e5dd41481 [PM] Port Branch Probability Analysis pass to the new pass manager.
Differential Revision: http://reviews.llvm.org/D19839

llvm-svn: 268601
2016-05-05 02:59:57 +00:00
Cong Hou 15ea016346 Use fixed-point representation for BranchProbability.
BranchProbability now is represented by its numerator and denominator in uint32_t type. This patch changes this representation into a fixed point that is represented by the numerator in uint32_t type and a constant denominator 1<<31. This is quite similar to the representation of BlockMass in BlockFrequencyInfoImpl.h. There are several pros and cons of this change:

Pros:

1. It uses only a half space of the current one.
2. Some operations are much faster like plus, subtraction, comparison, and scaling by an integer.

Cons:

1. Constructing a probability using arbitrary numerator and denominator needs additional calculations.
2. It is a little less precise than before as we use a fixed denominator. For example, 1 - 1/3 may not be exactly identical to 1 / 3 (this will lead to many BranchProbability unit test failures). This should not matter when we only use it for branch probability. If we use it like a rational value for some precise calculations we may need another construct like ValueRatio.

One important reason for this change is that we propose to store branch probabilities instead of edge weights in MachineBasicBlock. We also want clients to use probability instead of weight when adding successors to a MBB. The current BranchProbability has more space which may be a concern.

Differential revision: http://reviews.llvm.org/D12603

llvm-svn: 248633
2015-09-25 23:09:59 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Akira Hatanaka 5638b89944 Fix a bug in which BranchProbabilityInfo wasn't setting branch weights of basic blocks inside loops correctly.
Previously, BranchProbabilityInfo::calcLoopBranchHeuristics would determine the weights of basic blocks inside loops even when it didn't have enough information to estimate the branch probabilities correctly. This patch fixes the function to exit early if it doesn't see any exit edges or back edges and let the later heuristics determine the weights.

This fixes PR18705 and <rdar://problem/15991090>.

Differential Revision: http://reviews.llvm.org/D3363

llvm-svn: 206194
2014-04-14 16:56:19 +00:00
Chandler Carruth 32f46e7c07 Fix the API usage in loop probability heuristics. It was incorrectly
classifying many edges as exiting which were in fact not. These mainly
formed edges into sub-loops. It was also not correctly classifying all
returning edges out of loops as leaving the loop. With this match most
of the loop heuristics are more rational.

Several serious regressions on loop-intesive benchmarks like perlbench's
loop tests when built with -enable-block-placement are fixed by these
updated heuristics. Unfortunately they in turn uncover some other
regressions. There are still several improvemenst that should be made to
loop heuristics including trip-count, and early back-edge management.

llvm-svn: 142917
2011-10-25 09:47:41 +00:00