input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
how to fold notionally-out-of-bounds array getelementptr indices instead
of just doing these in lib/Analysis/ConstantFolding.cpp, because it can
be done in a fairly general way without TargetData, and because not all
constants are visited by lib/Analysis/ConstantFolding.cpp. This enables
more constant folding.
Also, set the "inbounds" flag when the getelementptr indices are
one-past-the-end.
llvm-svn: 81483
within the notional bounds of the static type of the getelementptr (which
is not the same as "inbounds") from GlobalOpt into a utility routine,
and use it in ConstantFold.cpp to check whether there are any mis-behaved
indices.
llvm-svn: 81478
loop exit edge -- new PHIs may be needed not only for the additional
splits that are made to preserve LoopSimplify form, but also for the
original split. Factor out the code that inserts new PHIs so that it
can be used for both. Remove LoopRotation.cpp's code for manually
updating LCSSA form, as it is now redundant. This fixes PR4934.
llvm-svn: 81363
that get created during loop unswitching, and fix SplitBlockPredecessors'
LCSSA updating code to create new PHIs instead of trying to just move
existing ones.
Also, optimize Loop::verifyLoop, since it gets called a lot. Use
searches on a sorted list of blocks instead of calling the "contains"
function, as is done in other places in the Loop class, since "contains"
does a linear search. Also, don't call verifyLoop from LoopSimplify or
LCSSA, as the PassManager is already calling verifyLoop as part of
LoopInfo's verifyAnalysis.
llvm-svn: 81221
extractelement operations into a bitcast of the pointer,
then a gep, then a scalar load. Disable this when the vector
only has one element, because it leads to infinite loops in
instcombine (PR4908).
This transformation seems like a really bad idea to me, as it
will likely disable CSE of vector load/stores etc and can be
better done in the code generator when profitable. This
goes all the way back to the first days of packed types,
r25299 specifically.
I'll let those people who care about the performance of vector
code decide what to do with this.
llvm-svn: 81185
instead of a bool argument, and to do the dominator check itself.
This makes it eaiser to use when DominatorTree information is
available.
llvm-svn: 80920
simplifylibcalls optimization is thus valid for C++ but not C.
It's not important enough to worry about for C++ apps, so just
remove it.
rdar://7191924
llvm-svn: 80887
for sanity. This didn't turn up any bugs.
Change CallGraphNode to maintain its "callsite" information in the
call edges list as a WeakVH instead of as an instruction*. This fixes
a broad class of dangling pointer bugs, and makes CallGraph have a number
of useful invariants again. This fixes the class of problem indicated
by PR4029 and PR3601.
llvm-svn: 80663
changes: SimplifyDemandedBits can't use the builder yet because it
has the wrong insertion point. This fixes a crash building
MultiSource/Benchmarks/PAQ8p
llvm-svn: 80537
indirect function pointer, inline it, then go to delete the body.
The problem is that the callgraph had other references to the function,
though the inliner had no way to know it, so we got a dangling pointer
and an invalid iterator out of the deal.
The fix to this is pretty simple: stop the inliner from deleting the
function by knowing that there are references to it. Do this by making
CallGraphNodes contain a refcount. This requires moving deletion of
available_externally functions to the module-level cleanup sweep where
it belongs.
llvm-svn: 80533
is itself a bitcast. Since we have gep(bitcast(bitcast(y))) in this
case, just wait for the two bitcasts to get zapped. This prevents
instcombine from confusing some aliasing stuff, and allows it to
directly eliminate the load in the testcase.
llvm-svn: 80508
calls into a function and if the calls bring in arrays, try to merge
them together to reduce stack size. For example, in the testcase
we'd previously end up with 4 allocas, now we end up with 2 allocas.
As described in the comments, this is not really the ideal solution
to this problem, but it is surprisingly effective. For example, on
176.gcc, we end up eliminating 67 arrays at "gccas" time and another
24 at "llvm-ld" time.
One piece of concern that I didn't look into: at -O0 -g with
forced inlining this will almost certainly result in worse debug
info. I think this is acceptable though given that this is a case
of "debugging optimized code", and we don't want debug info to
prevent the optimizer from doing things anyway.
llvm-svn: 80215
sinking code, since they are special. If the loop preheader happens
to be the entry block of a function, don't sink static allocas
out of it. This fixes PR4775.
llvm-svn: 80010
array member of a struct, it's possible to land in an arbitrary position
inside that struct, such that attempting to find further getelementptr
indices will fail. In such cases, folding cannot be done.
llvm-svn: 79485
static extents of the static array type, it causes GlobalOpt and
other passes to be more conservative. This canonicalization also
allows the constant folder to add "inbounds" to GEPs.
llvm-svn: 79440
TargetData is not present. It still uses TargetData when available.
This generalization also fixed some limitations in the TargetData
case; the attached testcase covers this.
llvm-svn: 79344
unfoldable references to a PHI node in the block being folded, and disable
the transformation in that case. The correct transformation of such PHI
nodes depends on whether BB dominates Succ, and dominance is expensive
to compute here. (Alternatively, it's possible to check whether any
uses are live, but that's also essentially a dominance calculation.
Another alternative is to use reg2mem, but it probably isn't a good idea to
use that in simplifycfg.)
Also, remove some incorrect code from CanPropagatePredecessorsForPHIs
which is made unnecessary with this patch: it didn't consider the case
where a PHI node in BB has multiple uses.
llvm-svn: 79174
the new load by the old load instead of by the extract element because
a store could have occurred between the load and extract element.
llvm-svn: 78891
also apply to vectors. This allows us to compile this:
#include <emmintrin.h>
__m128i a(__m128 a, __m128 b) { return a==a & b==b; }
__m128i b(__m128 a, __m128 b) { return a!=a | b!=b; }
to:
_a:
cmpordps %xmm1, %xmm0
ret
_b:
cmpunordps %xmm1, %xmm0
ret
with clang instead of to a ton of horrible code.
llvm-svn: 76863
Getelementptrs that are defined to wrap are virtually useless to
optimization, and getelementptrs that are undefined on any kind
of overflow are too restrictive -- it's difficult to ensure that
all intermediate addresses are within bounds. I'm going to take
a different approach.
Remove a few optimizations that depended on this flag.
llvm-svn: 76437
insertelement/extractelement.
I'm not entirely sure this is precisely what we want to do: should we
prefer bitcast(insertelement) or insertelement(bitcast)? Similarly. should we
prefer extractelement(bitcast) or bitcast(extractelement)?
llvm-svn: 76345
the operands have pointer type, so that the resulting type matches
the original SCEV type, and so that unnecessary ptrtoints are
avoided in common cases.
llvm-svn: 75680
(I think it's reasonably clear that we want to have a canonical form for
constructs like this; if anyone thinks that a select is not the best
canonical form, please tell me.)
llvm-svn: 75531
so that all code paths get it. PR4256 was about a case where the
phi translation loop would find all preds in the Visited cache, so
it could get by without re-sorting the NonLocalPointerDeps cache.
Fix this by resorting it earlier, there is no reason not to do this.
This patch inspired by Jakub Staszak's patch.
llvm-svn: 75476
an individual exhaustive evaluation reflects only the exit value
implied by an individual exit, which may differ from the actual
exit value of the loop if there are other exits. This fixes PR4477.
llvm-svn: 74447
when one of them can be converted to a trivial icmp and conditional
branch.
This addresses what is essentially a phase ordering problem.
SimplifyCFG knows how to do this transformation, but it doesn't do so
if the primary block has any instructions in it other than an icmp and
a branch. In the given testcase, the block contains other instructions,
however they are loop-invariant and can be hoisted. SimplifyCFG doesn't
have LoopInfo though, so it can't hoist them. And, it's important that
the blocks be merged before LoopRotation, as it doesn't support
multiple-exit loops.
llvm-svn: 74396
inserted to replace that value must dominate all of of the basic
blocks associated with the uses of the value in the PHI, not just
one of them.
llvm-svn: 74376
terminator, instead of after the last phi. This fixes a bug
exposed by ScalarEvolution analyzing more kinds of loops.
This fixes PR4436.
llvm-svn: 74072
SCEVUnknowns with identical Instructions to be equal. This allows
it to analze cases such as the attached testcase, where the front-end
has cloned the loop controlling expression. Along with r73805, this
lets IndVarSimplify eliminate all the sign-extend casts in the
loop in the attached testcase.
llvm-svn: 73807
expression in IVUsers, because in the case of a use of a non-linear
addrec outside of a loop, this causes the addrec to be evaluated as
a linear addrec.
llvm-svn: 73774
as if they were multiple uses of the same instruction. This interacts
well with the existing loadpre that j-t does to open up many new jump
threads earlier.
llvm-svn: 73768
casted induction variables in cases where the cast
isn't foldable. It ended up being a pessimization in
many cases. This could be fixed, but it would require
a bunch of complicated code in IVUsers' clients. The
advantages of this approach aren't visible enough to
justify it at this time.
llvm-svn: 73706
move loads back past a check that the load address
is valid, see new testcase. The test that went
in with 72661 has exactly this case, except that
the conditional it's moving past is checking
something else; I've settled for changing that
test to reference a global, not a pointer. It
may be possible to scan all the tests you pass and
make sure none of them are checking any component
of the address, but it's not trivial and I'm not
trying to do that here.
llvm-svn: 73632
obscuring what would otherwise be a low-bits mask. Use ComputeMaskedBits
to compute what ShrinkDemandedConstant knew about to reconstruct a
low-bits mask value.
llvm-svn: 73540
failures.
To support this, add some utility functions to Type to help support
vector/scalar-independent code. Change ConstantInt::get and
ConstantFP::get to support vector types, and add an overload to
ConstantInt::get that uses a static IntegerType type, for
convenience.
Introduce a new getConstant method for ScalarEvolution, to simplify
common use cases.
llvm-svn: 73431
they contain multiplications of constants with add operations.
This helps simplify several kinds of things; in particular it
helps simplify expressions like ((-1 * (%a + %b)) + %a) to %b,
as expressions like this often come up in loop trip count
computations.
llvm-svn: 73361
induction variable when the addrec to be expanded does not require
a wider type. This eliminates the need for IndVarSimplify to
micro-manage SCEV expansions, because SCEVExpander now
automatically expands them in the form that IndVarSimplify considers
to be canonical. (LSR still micro-manages its SCEV expansions,
because it's optimizing for the target, rather than for
other optimizations.)
Also, this uses the new getAnyExtendExpr, which has more clever
expression simplification logic than the IndVarSimplify code it
replaces, and this cleans up some ugly expansions in code such as
the included masked-iv.ll testcase.
llvm-svn: 73294
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
RewriteStoreUserOfWholeAlloca deal with tail padding because
isSafeUseOfBitCastedAllocation expects them to. Otherwise, we crash
trying to erase the bitcast.
llvm-svn: 72688
rewrite the comparison if there is any implicit extension or truncation
on the induction variable. I'm planning for IVUsers to eventually take
over some of the work of this code, and for it to be generalized.
llvm-svn: 72496
possible. For example, it now emits
%p.2.ip.1 = getelementptr [3 x [3 x double]]* %p, i64 2, i64 %tmp, i64 1
instead of the equivalent but less obvious
%p.2.ip.1 = getelementptr [3 x [3 x double]]* %p, i64 0, i64 %tmp, i64 19
llvm-svn: 72452
leave the original comparison in place if it has other uses, since the
other uses won't be dominated by the new comparison instruction.
llvm-svn: 72369
sending SCEVUnknowns to expandAddToGEP. This avoids the need for
expandAddToGEP to bend the rules and peek into SCEVUnknown
expressions.
Factor out the code for testing whether a SCEV can be factored by
a constant for use in a GEP index. This allows it to handle
SCEVAddRecExprs, by recursing.
As a result, SCEVExpander can now put more things in GEP indices,
so it emits fewer explicit mul instructions.
llvm-svn: 72366
Fix by clearing the rewriter cache before deleting the trivially dead
instructions.
Also make InsertedExpressions use an AssertingVH to catch these
bugs easier.
llvm-svn: 72364
assuming that the use of the value is in a block dominated by the
"normal" destination. LangRef.html and other documentation sources
don't explicitly guarantee this, but it seems to be assumed in
other places in LLVM at least.
This fixes an assertion failure on the included testcase, which
is derived from the Ada testsuite.
FixUsesBeforeDefs is a temporary measure which I'm looking to
replace with a more capable solution.
llvm-svn: 72266
Instcombine to be more aggressive about using SimplifyDemandedBits
on shift nodes. This allows a shift to be simplified to zero in the
included test case.
llvm-svn: 72204
of the comparison is defined inside the loop. This fixes a
use-before-def problem, because the transformation puts a use
of the RHS outside the loop.
llvm-svn: 72149
instructions. It attempts to create high-level multi-operand GEPs,
though in cases where this isn't possible it falls back to casting
the pointer to i8* and emitting a GEP with that. Using GEP instructions
instead of ptrtoint+arithmetic+inttoptr helps pointer analyses that
don't use ScalarEvolution, such as BasicAliasAnalysis.
Also, make the AddrModeMatcher more aggressive in handling GEPs.
Previously it assumed that operand 0 of a GEP would require a register
in almost all cases. It now does extra checking and can do more
matching if operand 0 of the GEP is foldable. This fixes a problem
that was exposed by SCEVExpander using GEPs.
llvm-svn: 72093
and generalize it so that it can be used by IndVarSimplify. Implement the
base IndVarSimplify transformation code using IVUsers. This removes
TestOrigIVForWrap and associated code, as ScalarEvolution now has enough
builtin overflow detection and folding logic to handle all the same cases,
and more. Run "opt -iv-users -analyze -disable-output" on your favorite
loop for an example of what IVUsers does.
This lets IndVarSimplify eliminate IV casts and compute trip counts in
more cases. Also, this happens to finally fix the remaining testcases
in PR1301.
Now that IndVarSimplify is being more aggressive, it occasionally runs
into the problem where ScalarEvolutionExpander's code for avoiding
duplicate expansions makes it difficult to ensure that all expanded
instructions dominate all the instructions that will use them. As a
temporary measure, IndVarSimplify now uses a FixUsesBeforeDefs function
to fix up instructions inserted by SCEVExpander. Fortunately, this code
is contained, and can be easily removed once a more comprehensive
solution is available.
llvm-svn: 71535
These values aren't analyzable, so they don't care if more information
about the loop trip count can be had. Also, SCEVUnknown is used for
a PHI while the PHI itself is being analyzed, so it needs to be left
in the Scalars map. This fixes a variety of subtle issues.
llvm-svn: 71533
method, fixing a crash on PR4146. While the store will
ultimately overwrite the "padded size" number of bits in memory,
the stored value may be a subset of this size. This function
only wants to handle the case where all bits are stored.
llvm-svn: 71224
bits captured, but the pointer marked nocapture. In fact
I now recall that this problem is why only readnone functions
returning void were considered before! However keep a small
fix that was also in r70876: a readnone function returning
void can result in bits being captured if it unwinds, so
test for this.
llvm-svn: 71168
checking for bcopy... no
checking for getc_unlocked... Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decUtility.c:360: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decUtility.o] Error 1
make[4]: *** Waiting for unfinished jobs....
Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decNumber.c:5591: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decNumber.o] Error 1
make[3]: *** [all-stage2-libdecnumber] Error 2
make[3]: *** Waiting for unfinished jobs....
llvm-svn: 71165
the readnone. Since MallocInst is scheduled for deletion
it doesn't seem worth doing anything more subtle, such as
having mayWriteToMemory return true for MallocInst.
llvm-svn: 71077
Running /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/test/
CodeGen/X86/dg.exp ...
FAIL: /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/test/
CodeGen/X86/change-compare-stride-1.ll
Failed with exit(1) at line 2
while running: grep {cmpq $-478,} change-compare-stride-1.ll.tmp
child process exited abnormally
llvm-svn: 71013