This feature implements support for making entries in the exception section
on XCOFF on the direct assembly path using the ".except" pseudo-op. It also
provides functionality to lower entries (comprised of language and reason
codes) into the exception section through the use of annotation metadata
attached to llvm.ppc.trap/trapd/tw/tdw intrinsics. Integrated assembler
support will be provided in another review. https://reviews.llvm.org/D133030
needs to merge first for LIT tests
Reviewed By: shchenz, RKSimon
Differential Revision: https://reviews.llvm.org/D132146
Add isNotDuplicable to CTRLoop pseudo instructions, to avoid other pass
such as early-tailduplication break the loop structure by duplicating
pseudo instructions.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D132738
This patch fixes the following two bugs in `PPCInstrInfo::isSignOrZeroExtended` helper, which is used from sign-/zero-extension elimination in PPCMIPeephole pass.
- Registers defined by load with update (e.g. LBZU) were identified as already sign or zero-extended. But it is true only for the first def (loaded value) and not for the second def (i.e. updated pointer).
- Registers defined by ORIS/XORIS were identified as already sign-extended. But, it is not true for sign extension depending on the immediate (while it is ok for zero extension).
To handle the first case, the parameter for the helpers is changed from `MachineInstr` to a register number to distinguish first and second defs. Also, this patch moves the initialization of PPCMIPeepholePass to allow mir test case.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D40554
Map hardware loop intrinsics loop_decrement and set_loop_iteration
to the new PowerPC pseudo instructions, so that the hardware loop
intrinsics will be expanded to normal cmp+branch form or ctrloop
form based on the CTR register usage on MIR level.
Reviewed By: lkail
Differential Revision: https://reviews.llvm.org/D123366
I don't have any evidence these particular uses are actually causing any
issues, but we should avoid accidentally truncating immediate values
depending on the host.
This patch implements a new way to generate the CTR loops. Now the
intrinsics inserted in hardware loop pass will be mapped to pseudo
instructions and these pseudo instructions will be expanded to CTR
loop or normal compare+branch loop in this post ISEL pass.
Reviewed By: lkail
Differential Revision: https://reviews.llvm.org/D122125
On Power PC we have ISA3.0 for Power 9, ISA3.1 for Power 10.
This patchs adds an ISA for mcpu=future. The idea is to have a placeholder ISA
for work that is experimental and may not be supported by existing ISAs.
Reviewed By: lei
Differential Revision: https://reviews.llvm.org/D126075
This patch implements the following floating point negative absolute value
builtins that required for compatibility with the XL compiler:
```
double __fnabs(double);
float __fnabss(float);
```
These builtins will emit :
- fnabs on PWR6 and below, or if VSX is disabled.
- xsnabsdp on PWR7 and above, if VSX is enabled.
Differential Revision: https://reviews.llvm.org/D125506
Currently the regsiter operand definitions are found in three separate files.
This patch moves all of the definitions into PPCRegisterInfo.td.
Reviewed By: amyk
Differential Revision: https://reviews.llvm.org/D123543
Add a compiler option and the instructions required to set the
special Data Stream Control Register (DSCR). The special register will
not be set by default.
Original patch by: Muhammad Usman
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D117013
Currently in Clang, we have two types of builtins for fnmsub operation:
one for float/double vector, they'll be transformed into IR operations;
one for float/double scalar, they'll generate corresponding intrinsics.
But for the vector version of builtin, the 3 op chain may be recognized
as expensive by some passes (like early cse). We need some way to keep
the fnmsub form until code generation.
This patch introduces ppc.fnmsub.* intrinsic to unify four fnmsub
intrinsics.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D116015
Currently all of the MMA instructions as well as the MMA related register info
is bundled with the Power 10 instructions. This patch just splits them out.
Reviewed By: lei
Differential Revision: https://reviews.llvm.org/D120515
The Linux kernel build uses absolute expressions suffixed with @lo/@ha
relocations. This currently doesn't work for DS/DQ form instructions and
there is no reason for it not to. It also works with GAS.
This patch allows this as long as the value is a multiple of 4/16
for DS/DQ form.
Differential revision: https://reviews.llvm.org/D115419
Power ISA 3.1 adds xsmaxcqp/xsmincqp for quad-precision type-c max/min selection,
and this opens the opportunity to improve instruction selection on: llvm.maxnum.f128,
llvm.minnum.f128, and select_cc ordered gt/lt and (don't care) gt/lt.
Reviewed By: nemanjai, shchenz, amyk
Differential Revision: https://reviews.llvm.org/D117006
Add support for Return Oriented Programming (ROP) protection for 32 bit.
This patch also adds a testing for AIX on both 64 and 32 bit.
Reviewed By: amyk
Differential Revision: https://reviews.llvm.org/D111362
This mnemonic has been supported by GAS for years and
it was added to the PowerPC ISA as of ISA 3.1. We will
support the mnemonic to be compatible with GAS.
This patch adds the backend optimization to match XL behavior for the two
builtins __tdw and __tw that when the second input argument is an immediate,
emitting tdi/twi instructions instead of td/tw.
Reviewed By: nemanjai, amyk, PowerPC
Differential revision: https://reviews.llvm.org/D112285
Currently, the floating point instructions that depend on
rounding mode are correctly marked in the PPC back end with
an implicit use of the RM register. Similarly, instructions
that explicitly define the register are marked with an
implicit def of the same register. So for the most part,
RM-using code won't be moved across RM-setting instructions.
However, calls are not marked as RM-setting instructions so
code can be moved across calls. This is generally desired,
but so is the ability to turn off this behaviour with an
appropriate option - and -frounding-math really should be
that option.
This patch provides a set of call instructions (for direct
and indirect calls) that are marked with an implicit def of
the RM register. These will be used for calls that are marked
with the strictfp attribute.
Differential revision: https://reviews.llvm.org/D111433
Currently, FPSCR is not modeled, so in some early passes (such as
early-cse), the read/set intrinsics to FPSCR may get incorrect
simplification.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D112380
This patch makes sure that the builtins __builtin_ppc_load8r and
__ builtin_ppc_store8r are only available for Power 7 and up.
Currently the builtins seem to produce incorrect code if used for
Power 6 or before.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D110653
This patch exploits the prefixed load and store instructions utilizing the
refactored load/store implementation introduced in D93370.
Prefixed load and store instructions are emitted whenever we are loading or
storing a value with an offset that fits into a 34-bit signed immediate.
Patterns for the prefixed load and stores are added in this patch, as well as
the implementation that detects when we are loading and storing a value with an
offset that fits in 34-bits.
Differential Revision: https://reviews.llvm.org/D96075
This patch updates the PC-Relative load and store patterns to utilize the
refactored load/store implementation introduced in D93370.
PC-Relative implementation has been added to PPCISelLowering.cpp, and also the
patterns in PPCInstrPrefix.td have been updated and no longer require AddedComplexity.
All existing test cases pass with this update.
Differential Revision: https://reviews.llvm.org/D95116
PowerPC can model these instructions, so we don't need this flag set.
Reviewed By: shchenz, jsji
Differential Revision: https://reviews.llvm.org/D71983
All floating point values in registers are in double precision
representation. In order to materialize the correct single precision
value, we need to convert the APFloat that represents the value
to double precision first.
Reviewed By: amyk, NeHuang
Differential Revision: https://reviews.llvm.org/D106812
Add td definitions and asm/disasm tests for the addex instruction introduced in
ISA 3.0.
Reviewed By: nemanjai, amyk, NeHuang
Differential Revision: https://reviews.llvm.org/D106666
This is a followup patch for D105930 to add implicit-def of RM for
mtfsb[01] instructions as per review comments.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D106603
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtin and intrinsic for "__stbcx".
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D106484
This patch is in a series of patches to provide
builtins for compatibility with the XL compiler.
This patch adds builtins related to floating point
operations
Reviewed By: #powerpc, nemanjai, amyk, NeHuang
Differential Revision: https://reviews.llvm.org/D103986
Implemented builtins for mtmsr, mfspr, mtspr on PowerPC;
the patch is intended for XL Compatibility.
Differential revision: https://reviews.llvm.org/D106130
This patch implements store, load, move from and to registers related
builtins, as well as the builtin for stfiw. The patch aims to provide
feature parady with xlC on AIX.
Differential revision: https://reviews.llvm.org/D105946
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch add the builtin and emit target independent
code for __cmpb.
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D105194
This provides intrinsics for emitting instructions that set the FPSCR (`mtfsf/mtfsfi`).
The patch also conservatively marks the rounding mode as an implicit def for both since they both may set the rounding mode depending on the operands.
Reviewed By: #powerpc, qiucf
Differential Revision: https://reviews.llvm.org/D105957
Implement a subset of builtins required for compatiblilty with AIX XL compiler.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D105930
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtins and instrisics for population
count, reversed load and store related operations.
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D106021
This patch implements the `__popcntb` XL compatibility builtin for 32bit in the frontend and backend. This patch also updates tests for `__popcntb` and other XL Compat sync related builtins.
Reviewed By: #powerpc, nemanjai, amyk
Differential Revision: https://reviews.llvm.org/D105360
This patch uses AtomicExpandPass to implement quadword lock free atomic operations. It adopts the method introduced in https://reviews.llvm.org/D47882, which expand atomic operations post RA to avoid spilling that might prevent LL/SC progress.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D103614
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtins and instrisics for compare
and multiply related operations.
Reviewed By: nemanjai, #powerpc
Differential revision: https://reviews.llvm.org/D102875
[NFC] This patch adds features for pwr7, pwr8, and pwr9 that can be
used for semachecking builtin functions that are only valid for certain
versions of ppc.
Reviewed By: nemanjai, #powerpc
Authored By: Quinn Pham <Quinn.Pham@ibm.com>
Differential revision: https://reviews.llvm.org/D105501
LDARX and LWARX sometimes gets optimized out by the compiler
when it is critical to the correctness of the code. This inline asm generation
ensures that it preserved.
Differential Revision: https://reviews.llvm.org/D105754
[NFC] This patch adds features for pwr7, pwr8, and pwr9 that can be
used for semachecking builtin functions that are only valid for certain
versions of ppc.
Reviewed By: nemanjai, #powerpc
Authored By: Quinn Pham <Quinn.Pham@ibm.com>
Differential revision: https://reviews.llvm.org/D105501
This patch implements trap and FP to and from double conversions. The builtins
generate code that mirror what is generated from the XL compiler. Intrinsics
are named conventionally with builtin_ppc, but are aliased to provide the same
builtin names as the XL compiler.
Differential Revision: https://reviews.llvm.org/D103668
This patch implaments the load and reserve and store conditional
builtins for the PowerPC target, in order to have feature parody with
xlC on AIX.
Differential revision: https://reviews.llvm.org/D105236
Export `lq`, `stq`, `lqarx` and `stqcx.` in preparation for implementing 16-byte lock free atomic operations on AIX.
Add a new register class `g8prc` for these instructions, since these instructions require even-odd register pair.
Reviewed By: nemanjai, jsji, #powerpc
Differential Revision: https://reviews.llvm.org/D103010
This is the first in a series of patches to provide builtins for
compatibility with the XL compiler. Most of the builtins already had
intrinsics and only needed to be implemented in the front end.
Intrinsics were created for the three iospace builtins, eieio, and icbt.
Pseudo instructions were created for eieio and iospace_eieio to
ensure that nops were inserted before the eieio instruction.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D102443
This instruction is a nop on all server cores (certainly on all
cores that AIX supports) so it is fine to emit a nop instead of it.
In fact, that is exactly what XL emits. So we emit a nop on AIX
and we leave the codegen as is on other platforms since there may
indeed be cores out there for which this actually does some prefetching.
This patch updates the scalar atomic patterns to use the refactored load/store
implementation introduced in D93370.
All existing test cases pass with when the refactored patterns are utilized.
Differential Revision: https://reviews.llvm.org/D94498