This re-applies r262886 with a fix for 32 bit platforms that have 8 byte
pointer alignment, effectively reverting r262892.
Original Message:
Currently some SDNode operands are malloc'd, some are stored inline in
subclasses of SDNode, and some are thrown into a BumpPtrAllocator.
This scheme is complex, inconsistent, and makes refactoring SDNodes
fairly difficult.
Instead, we can allocate all of the operands using an ArrayRecycler
that wraps a BumpPtrAllocator. This keeps the cache locality when
iterating operands, improves locality when iterating SDNodes without
looking at operands, and vastly simplifies the ownership semantics.
It also means we stop overallocating SDNodes by 2-3x and will make it
simpler to fix the rampant undefined behaviour we have in how we
mutate SDNodes from one kind to another (See llvm.org/pr26808).
This is NFC other than the changes in memory behaviour, and I ran some
LNT tests to make sure this didn't hurt compile time. Not many tests
changed: there were a couple of 1-2% regressions reported, but there
were more improvements (of up to 4%) than regressions.
llvm-svn: 262902
Looks like the largest SDNode is different between 32 and 64 bit now,
so this is breaking 32 bit bots. Reverting while I figure out a fix.
This reverts r262886.
llvm-svn: 262892
Currently some SDNode operands are malloc'd, some are stored inline in
subclasses of SDNode, and some are thrown into a BumpPtrAllocator.
This scheme is complex, inconsistent, and makes refactoring SDNodes
fairly difficult.
Instead, we can allocate all of the operands using an ArrayRecycler
that wraps a BumpPtrAllocator. This keeps the cache locality when
iterating operands, improves locality when iterating SDNodes without
looking at operands, and vastly simplifies the ownership semantics.
It also means we stop overallocating SDNodes by 2-3x and will make it
simpler to fix the rampant undefined behaviour we have in how we
mutate SDNodes from one kind to another (See llvm.org/pr26808).
This is NFC other than the changes in memory behaviour, and I ran some
LNT tests to make sure this didn't hurt compile time. Not many tests
changed: there were a couple of 1-2% regressions reported, but there
were more improvements (of up to 4%) than regressions.
llvm-svn: 262886
Before this change, we would get the type definition in the middle
of the instruction.
E.g., %0(48) = G_ADD %struct_alias = type { i32, i16 } %edi, %edi
Now, we have just the expected type name:
%0(48) = G_ADD %struct_alias %edi, %edi
llvm-svn: 262885
Now the type API is always available, but when global-isel is not
built the implementation does nothing.
Note: The implementation free of ifdefs is WIP and tracked here in PR26576.
llvm-svn: 262873
Rematerializing and merging into a bigger register class at the same
time, requires the subregister range lanemasks getting remapped to the
new register class.
This fixes http://llvm.org/PR26805
llvm-svn: 262768
copy coalescing with enabled subregister liveness can reveal undef uses,
previously this was only checked for the SrcReg in updateRegDefsUses()
but we need to check DstReg as well.
llvm-svn: 262767
The divrem combine assumed the type of the div/rem is simple, which isn't
necessarily true. This probably worked fine until r250825, since it only
saw legal types, but now breaks when it runs as a pre-type-legalization
combine.
This fixes PR26835.
Differential Revision: http://reviews.llvm.org/D17878
llvm-svn: 262746
When div+rem calls on the same arguments are found, the ARM back-end merges the
two calls into one __aeabi_divmod call for up to 32-bits values. However,
for 64-bit values, which also have a lib call (__aeabi_ldivmod), it wasn't
merging the calls, and thus calling ldivmod twice and spilling the temporary
results, which generated pretty bad code.
This patch legalises 64-bit lib calls for divmod, so that now all the spilling
and the second call are gone. It also relaxes the DivRem combiner a bit on the
legal type check, since it was already checking for isLegalOrCustom on every
value, so the extra check for isTypeLegal was redundant.
Second attempt, creating TLI.isOperationCustom like isOperationExpand, to make
sure we only emit valid types or the ones that were explicitly marked as custom.
Now, passing check-all and test-suite on x86, ARM and AArch64.
This patch fixes PR17193 (and a long time FIXME in the tests).
llvm-svn: 262738
Generalise the existing SIGN_EXTEND to SIGN_EXTEND_VECTOR_INREG combine to support zero extension as well and get rid of a lot of unnecessary ANY_EXTEND + mask patterns.
Differential Revision: http://reviews.llvm.org/D17691
llvm-svn: 262599
Summary:
Removing MMOs is not our prefer behavior any more.
Reviewers: mcrosier, reames
Differential Revision: http://reviews.llvm.org/D17668
llvm-svn: 262580
If we have a loop with a rarely taken path, we will prune that from the blocks which get added as part of the loop chain. The problem is that we weren't then recognizing the loop chain as schedulable when considering the preheader when forming the function chain. We'd then fall to various non-predecessors before finally scheduling the loop chain (as if the CFG was unnatural.) The net result was that there could be lots of garbage between a loop preheader and the loop, even though we could have directly fallen into the loop. It also meant we separated hot code with regions of colder code.
The particular reason for the rejection of the loop chain was that we were scanning predecessor of the header, seeing the backedge, believing that was a globally more important predecessor (true), but forgetting to account for the fact the backedge precessor was already part of the existing loop chain (oops!.
Differential Revision: http://reviews.llvm.org/D17830
llvm-svn: 262547
Catch objects with a displacement of zero do not initialize a catch
object. The displacement is relative to %rsp at the end of the
function's prologue for x86_64 targets.
If we place an object at the top-of-stack, we will end up wit a
displacement of zero resulting in our catch object remaining
uninitialized.
Address this by creating our catch objects as fixed objects. We will
ensure that the UnwindHelp object is created after the catch objects so
that no catch object will have a displacement of zero.
Differential Revision: http://reviews.llvm.org/D17823
llvm-svn: 262546
When div+rem calls on the same arguments are found, the ARM back-end merges the
two calls into one __aeabi_divmod call for up to 32-bits values. However,
for 64-bit values, which also have a lib call (__aeabi_ldivmod), it wasn't
merging the calls, and thus calling ldivmod twice and spilling the temporary
results, which generated pretty bad code.
This patch legalises 64-bit lib calls for divmod, so that now all the spilling
and the second call are gone. It also relaxes the DivRem combiner a bit on the
legal type check, since it was already checking for isLegalOrCustom on every
value, so the extra check for isTypeLegal was redundant.
This patch fixes PR17193 (and a long time FIXME in the tests).
llvm-svn: 262507
The placement new calls here were all calling the allocation function
in RecyclingAllocator/Recycler for SDNode, instead of the function for
the specific subclass we were constructing.
Since this particular allocator always overallocates it more or less
worked, but would hide what we're actually doing from any memory
tools. Also, if you tried to change this allocator so something like a
BumpPtrAllocator or MallocAllocator, the compiler would crash horribly
all the time.
Part of llvm.org/PR26808.
llvm-svn: 262500
On AMDGPU where operations i64 operations are often bitcasted to v2i32
and back, this pattern shows up regularly where it breaks some
expected combines on i64, such as load width reducing.
This fixes some test failures in a future commit when i64 loads
are changed to promote.
llvm-svn: 262397
This reverts commit r262316.
It seems that my change breaks an out-of-tree chromium buildbot, so
I'm reverting this in order to investigate the situation further.
llvm-svn: 262387
Summary:
Calls sometimes need to be convergent. This is already handled at the
LLVM IR level, but it also needs to be handled at the MI level.
Ideally we'd propagate convergence from instructions, down through the
selection DAG, and into MIs. But this is Hard, and would affect
optimizations in the SDNs -- right now only SDNs with two operands have
any flags at all.
Instead, here's a much simpler hack: Add new opcodes for NVPTX for
convergent calls, and generate these when lowering convergent LLVM
calls.
Reviewers: jholewinski
Subscribers: jholewinski, chandlerc, joker.eph, jhen, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17423
llvm-svn: 262373
Summary:
This patch modifies the existing comparison, branch, conditional-move
and select patterns, and adds new ones where needed. Also, the updated
SLT{u,i,iu} set of instructions generate a GPR width result.
The majority of the code changes in the Mips back-end fix the wrong
assumption that the result of SETCC nodes always produce an i32 value.
The changes in the common code path account for the fact that in 64-bit
MIPS targets, i1 is promoted to i32 instead of i64.
Reviewers: dsanders
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D10970
llvm-svn: 262316
The CatchObjOffset is relative to the end of the EH registration node
for 32-bit x86 WinEH targets. A special sentinel value, 0, is used to
indicate that no catch object should be initialized.
This means that a catch object allocated immediately before the
registration node would be assigned a CatchObjOffset of 0, leading the
runtime to believe that a catch object should not be initialized.
To handle this, allocate the registration node prior to any other frame
object. This will ensure that catch objects will not be allocated
before the registration node.
This fixes PR26757.
Differential Revision: http://reviews.llvm.org/D17689
llvm-svn: 262294
When a variable is described by a single DBG_VALUE instruction we can
often use a more efficient inline DW_AT_location instead of using a
location list.
This commit makes the heuristic that decides when to apply this
optimization stricter by also verifying that the DBG_VALUE is live at the
entry of the function (instead of just checking that it is valid until
the end of the function).
<rdar://problem/24611008>
llvm-svn: 262247