One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).
Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278079
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278078
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
This reverts commit r278048. Something changed between the last time I
built this--it takes awhile on my ridiculously slow and ancient
computer--and now that broke this.
llvm-svn: 278053
Summary:
Based on two patches by Michael Mueller.
This is a target attribute that causes a function marked with it to be
emitted as "hotpatchable". This particular mechanism was originally
devised by Microsoft for patching their binaries (which they are
constantly updating to stay ahead of crackers, script kiddies, and other
ne'er-do-wells on the Internet), but is now commonly abused by Windows
programs to hook API functions.
This mechanism is target-specific. For x86, a two-byte no-op instruction
is emitted at the function's entry point; the entry point must be
immediately preceded by 64 (32-bit) or 128 (64-bit) bytes of padding.
This padding is where the patch code is written. The two byte no-op is
then overwritten with a short jump into this code. The no-op is usually
a `movl %edi, %edi` instruction; this is used as a magic value
indicating that this is a hotpatchable function.
Reviewers: majnemer, sanjoy, rnk
Subscribers: dberris, llvm-commits
Differential Revision: https://reviews.llvm.org/D19908
llvm-svn: 278048
Gathering constantins from a condition on the false path ask makeAllowedICmpRegion about inverse predicate instead of inversing the resulting range.
This change was separated from the review "[LVI] Make LVI smarter about comparisons with non-constants" (https://reviews.llvm.org/D23205#inline-198361)
llvm-svn: 278009
Summary:
The correctness fix here is that when we CSE a load with another load,
we need to combine the metadata on the two loads. This matches the
behavior of other passes, like instcombine and GVN.
There's also a minor optimization improvement here: for load PRE, the
aliasing metadata on the inserted load should be the same as the
metadata on the original load. Not sure why the old code was throwing
it away.
Issue found by inspection.
Differential Revision: http://reviews.llvm.org/D21460
llvm-svn: 277977
Summary: Hot callsites should have higher threshold than inline hints. This patch uses separate threshold parameter for hot callsites.
Reviewers: davidxl, eraman
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D22368
llvm-svn: 277860
Shifts with a uniform but non-constant count were considered very expensive to
vectorize, because the splat of the uniform count and the shift would tend to
appear in different blocks. That made the splat invisible to ISel, and we'd
scalarize the shift at codegen time.
Since r201655, CodeGenPrepare sinks those splats to be next to their use, and we
are able to select the appropriate vector shifts. This updates the cost model to
to take this into account by making shifts by a uniform cheap again.
Differential Revision: https://reviews.llvm.org/D23049
llvm-svn: 277782
I'm removing a misplaced pair of more specific folds from InstCombine in this patch as well,
so we know where those folds are happening in InstSimplify.
llvm-svn: 277738
Summary:
TargetBaseAlign is no longer required since LSV checks if target allows misaligned accesses.
A constant defining a base alignment is still needed for stack accesses where alignment can be adjusted.
Previous patch (D22936) was reverted because tests were failing. This patch also fixes the cause of those failures:
- x86 failing tests either did not have the right target, or the right alignment.
- NVPTX failing tests did not have the right alignment.
- AMDGPU failing test (merge-stores) should allow vectorization with the given alignment but the target info
considers <3xi32> a non-standard type and gives up early. This patch removes the condition and only checks
for a maximum size allowed and relies on the next condition checking for %4 for correctness.
This should be revisited to include 3xi32 as a MVT type (on arsenm's non-immediate todo list).
Note that checking the sizeInBits for a MVT is undefined (leads to an assertion failure),
so we need to create an EVT, hence the interface change in allowsMisaligned to include the Context.
Reviewers: arsenm, jlebar, tstellarAMD
Subscribers: jholewinski, arsenm, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D23068
llvm-svn: 277735
This reverts commit r277611 and the followup r277614.
Bootstrap builds and chromium builds are crashing during inlining after
this change.
llvm-svn: 277642
We were able to figure out that the result of a call is some constant.
While propagating that fact, we added the constant to the value map.
This is problematic because it results in us losing the call site when
processing the value map.
This fixes PR28802.
llvm-svn: 277611
There were issues with simply reporting AttrUnknown on
previously-unknown values in CFLAnders. So, we now act *entirely*
conservatively for values we haven't seen before. As in the prior patch
(r277362), writing a lit test for this isn't exactly trivial. If someone
wants a test badly, I'm willing to try to write one.
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D23077
llvm-svn: 277533
Added ability to estimate the entry count of the extracted function and
the branch probabilities of the exit branches.
Patch by River Riddle!
Differential Revision: https://reviews.llvm.org/D22744
llvm-svn: 277411
Summary: By generalize the interface, users are able to inject more flexible Node token into the algorithm, for example, a pair of vector<Node>* and index integer. Currently I only migrated SCCIterator to use NodeRef, but more is coming. It's a NFC.
Reviewers: dblaikie, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22937
llvm-svn: 277399
As it turns out, modref queries are broken with CFLAA. Specifically,
the data source we were using for determining modref behaviors
explicitly ignores operations on non-pointer values. So, it wouldn't
note e.g. storing an i32 to an i32* (or loading an i64 from an i64*).
It also ignores external function calls, rather than acting
conservatively for them.
(N.B. These operations, where necessary, *are* tracked by CFLAA; we just
use a different mechanism to do so. Said mechanism is relatively
imprecise, so it's unlikely that we can provide reasonably good modref
answers with it as implemented.)
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22978
llvm-svn: 277366
Currently, CFLAnders assumes that values it hasn't seen don't alias
anything. This patch fixes that. Given that the only way for this to
happen is to query AA, rely on specific transformations happening, then
query AA again (looking for a specific set of queries), lit testing is a
bit difficult. If someone really wants a test, I'm happy to add one.
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22981
llvm-svn: 277362
Added ability to estimate the entry count of the extracted function and
the branch probabilities of the exit branches.
Patch by River Riddle!
Differential Revision: https://reviews.llvm.org/D22744
llvm-svn: 277313
Patch by Sunita Marathe
Third try, now following fixes to MSan to handle mempcy in such a way that this commit won't break the MSan buildbots. (Thanks, Evegenii!)
llvm-svn: 277189
An undef vector element can be treated as if it had any value. Folding
such a vector element to 0 in a bitcast can open up further folding
opportunities.
llvm-svn: 277104
ConstantExpr::getWithOperands does much of the hard work that
ConstantFoldInstOperandsImpl tries to do but more completely.
This lets us fold ExtractValue/InsertValue expressions.
llvm-svn: 277100
A ConstantVector can have ConstantExpr operands and vice versa.
However, the folder had no ability to fold ConstantVectors which, in
some cases, was an optimization barrier.
Instead, rephrase the folder in terms of Constants instead of
ConstantExprs and teach callers how to deal with failure.
llvm-svn: 277099
This patch fixes an assertion that fires when we try to add non-pointer
Values to the CFLGraph. Centralizing the check for whether something
is/isn't a pointer type isn't completely trivial (and, in some cases,
would end up being entirely redundant), but it may be beneficial to do
so if this trips us up more in the future.
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22947
llvm-svn: 277096
Summary:
The motivation is the same as in D22141: In order to add the hotness
attribute to optimization remarks we need BFI to be available in all
passes that emit optimization remarks. BFI depends on BPI so unless we
make this lazy as well we would still compute BPI unconditionally.
The solution is to use the new LazyBPI pass in LazyBFI and only compute
BPI when computation of BFI is requested by the client.
I extended the laziness test using a LoopDistribute test to also cover
BPI.
Reviewers: hfinkel, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22835
llvm-svn: 277083
When folding an expression, we run ConstantFoldConstantExpression on
each operand of that expression.
However, ConstantFoldConstantExpression can fail and retur nullptr.
Previously, we would bail on further refining the expression.
Instead, use the original operand and see if we can refine a later
operand.
llvm-svn: 276959
This patch lets CFLAnders respond to mod-ref queries. It also includes
a small bugfix to CFLSteens.
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22823
llvm-svn: 276939
Summary:
This lets us avoid creating and destroying a CallbackVH every time we
check the cache.
This is good for a 2% e2e speedup when compiling one of the large Eigen
tests at -O3.
FTR, I tried making the ValueCache hashtable one-level -- i.e., mapping
a pair (Value*, BasicBlock*) to a lattice value, and that didn't seem to
provide any additional improvement. Saving a word in LVILatticeVal by
merging the Tag and Val fields also didn't yield a speedup.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21951
llvm-svn: 276926
This unblocks the new PM part of River's patch in
https://reviews.llvm.org/D22706
Conveniently, this same change was needed for D21921 and so these
changes are just spun out from there.
llvm-svn: 276515
While we handed loads past the end of an array, we didn't handle loads
_before_ the array.
This fixes PR28062.
N.B. While the bug in the code is obvious, I am struggling to craft a
test case which is reasonable in size.
llvm-svn: 276510
This change lets us prove things like
"{X,+,10} s< 5000" implies "{X+7,+,10} does not sign overflow"
It does this by replacing replacing getConstantDifference by
computeConstantDifference (which is smarter) in
isImpliedCondOperandsViaRanges.
llvm-svn: 276505
This patch teaches FunctionInfo about offsets.
Like the last patch, this one doesn't introduce any visible
functionality change (the core algorithm knows nothing about offsets;
they're just plumbed through). Tests will come when we start acting
differently because of the offsets.
Patch by Jia Chen.
(N.B. I made a tiny change to Jia's patch to avoid warnings by GCC: I
put DenseMapInfo specializations in the `llvm` namespace. Only realized
that those appeared when compiling locally. :) )
Differential Revision: https://reviews.llvm.org/D22634
llvm-svn: 276486
rL245171 exposed a hole in InstSimplify that manifested in a strange way in PR28466:
https://llvm.org/bugs/show_bug.cgi?id=28466
It's possible to use trunc + icmp sgt/slt in place of an and + icmp eq/ne, so we need to
recognize that pattern to eliminate selects that are choosing between some value and some
bitmasked version of that value.
Note that there is significant room for improvement (refactoring) and enhancement (more
patterns, possibly in InstCombine rather than here).
Differential Revision: https://reviews.llvm.org/D22537
llvm-svn: 276341
std::numeric_limits<int64_t>::max() is not constexpr in VC 2013 headers,
and Clang complains that it isn't. MSVC 2013 itself is emitting a
dynamic initializer for this thing. Instead, use an enum.
llvm-svn: 276334
Having the added `\brief` made doxygen interpret it as the summary for
the `llvm` namespace (visible at:
http://llvm.org/doxygen/namespaces.html).
llvm-svn: 276331
(Also, refactor our constexpr handling to be less insane).
This patch lets us track field offsets in the CFL Graph, which is the
first step to making CFLAA field/offset sensitive. Woohoo! Note that
this patch shouldn't visibly change our behavior (since we make no use
of the offsets we're now tracking), so we can't quite add tests for this
yet.
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22598
llvm-svn: 276201
The earlier change added hotness attribute to missed-optimization
remarks. This follows up with the analysis remarks (the ones explaining
the reason for the missed optimization).
llvm-svn: 276192
This helps because LoopAccessReport is passed around as a const
reference and we derive the basic block passed as the Value parameter
from the instruction in LoopAccessReport.
llvm-svn: 276191
In D12090, the ExprValueMap was added to reuse existing value during SCEV expansion.
However, const folding and sext/zext distribution can make the reuse still difficult.
A simplified case is: suppose we know S1 expands to V1 in ExprValueMap, and
S1 = S2 + C_a
S3 = S2 + C_b
where C_a and C_b are different SCEVConstants. Then we'd like to expand S3 as
V1 - C_a + C_b instead of expanding S2 literally. It is helpful when S2 is a
complex SCEV expr and S2 has no entry in ExprValueMap, which is usually caused
by the fact that S3 is generated from S1 after const folding.
In order to do that, we represent ExprValueMap as a mapping from SCEV to
ValueOffsetPair. We will save both S1->{V1, 0} and S2->{V1, C_a} into the
ExprValueMap when we create SCEV for V1. When S3 is expanded, it will first
expand S2 to V1 - C_a because of S2->{V1, C_a} in the map, then expand S3 to
V1 - C_a + C_b.
Differential Revision: https://reviews.llvm.org/D21313
llvm-svn: 276136
We just set PreserveLCSSA to always true since we don't have an
analogous method `mustPreserveAnalysisID(LCSSA)`.
Also port LoopInfo verifier pass to test LoopUnrollPass.
llvm-svn: 276063
This patch adds function summary support to CFLAnders. It also comes
with a lot of tests! Woohoo!
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22450
llvm-svn: 276026
This patch adds more specific edges to CFLAndersAliasAnalysis. The goal
of these edges is to give us more information about *how* two values
that MayAlias alias. With this, we can now tell cases like
a = b; // ergo, a may alias b
apart from
a = c;
b = c;
// so, a may alias b, but only because they were both assigned to c.
...And others.
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22429
llvm-svn: 276023
D20859 and D20860 attempted to replace the SSE (V)CVTTPS2DQ and VCVTTPD2DQ truncating conversions with generic IR instead.
It turns out that the behaviour of these intrinsics is different enough from generic IR that this will cause problems, INF/NAN/out of range values are guaranteed to result in a 0x80000000 value - which plays havoc with constant folding which converts them to either zero or UNDEF. This is also an issue with the scalar implementations (which were already generic IR and what I was trying to match).
This patch changes both scalar and packed versions back to using x86-specific builtins.
It also deals with the other scalar conversion cases that are runtime rounding mode dependent and can have similar issues with constant folding.
A companion clang patch is at D22105
Differential Revision: https://reviews.llvm.org/D22106
llvm-svn: 275981
Summary:
The main goal is to able to start using the new OptRemarkEmitter
analysis from the LoopVectorizer. Since the vectorizer was recently
converted to the new PM, it makes sense to convert this analysis as
well.
This pass is currently tested through the LoopDistribution pass, so I am
also porting LoopDistribution to get coverage for this analysis with the
new PM.
Reviewers: davidxl, silvas
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D22436
llvm-svn: 275810
Summary:
To enable profile-guided indirect call promotion in ThinLTO mode, we
simply add call graph edges for each profitable target from the profile
to the summaries, then the summary-guided importing will consider the
callee for importing as usual.
Also we need to enable the indirect call promotion pass creation in the
PassManagerBuilder when PerformThinLTO=true (we are in the ThinLTO
backend), so that the newly imported functions are considered for
promotion in the backends.
The IC promotion profiles refer to callees by GUID, which required
adding GUIDs to the per-module VST in bitcode (and assigning them
valueIds similar to how they are assigned valueIds in the combined
index).
Reviewers: mehdi_amini, xur
Subscribers: mehdi_amini, davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21932
llvm-svn: 275707
This patch adds proper handling of stratified attributes into our
anders-style CFLAA implementation. It also comes bundled with more
CFLAnders tests. :)
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22325
llvm-svn: 275604
This adds an incomplete anders-style implementation for CFLAA. It's
incomplete in that it's missing interprocedural analysis, attrs
handling, etc. and that it needs more tests. More tests and features
will be added in future commits.
Patch by Jia Chen.
Differential Revision: https://reviews.llvm.org/D22291
llvm-svn: 275602
Summary:
This is the first set of changes implementing the RFC from
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334
This is a cross-sectional patch; rather than implementing the hotness
attribute for all optimization remarks and all passes in a patch set, it
implements it for the 'missed-optimization' remark for Loop
Distribution. My goal is to shake out the design issues before scaling
it up to other types and passes.
Hotness is computed as an integer as the multiplication of the block
frequency with the function entry count. It's only printed in opt
currently since clang prints the diagnostic fields directly. E.g.:
remark: /tmp/t.c:3:3: loop not distributed: use -Rpass-analysis=loop-distribute for more info (hotness: 300)
A new API added is similar to emitOptimizationRemarkMissed. The
difference is that it additionally takes a code region that the
diagnostic corresponds to. From this, hotness is computed using BFI.
The new API is exposed via an analysis pass so that it can be made
dependent on LazyBFI. (Thanks to Hal for the analysis pass idea.)
This feature can all be enabled by setDiagnosticHotnessRequested in the
LLVM context. If this is off, LazyBFI is not calculated (D22141) so
there should be no overhead.
A new command-line option is added to turn this on in opt.
My plan is to switch all user of emitOptimizationRemark* to use this
module instead.
Reviewers: hfinkel
Subscribers: rcox2, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D21771
llvm-svn: 275583
Calling getModRefInfo with a fence resulted in crashes because fences
don't have a memory location. Add a new predicate to Instruction
called isFenceLike which indicates that the instruction mutates memory
but not any single memory location in particular. In practice, it is a
proxy for the set of instructions which "mayWriteToMemory" but cannot be
used with MemoryLocation::get.
This fixes PR28570.
llvm-svn: 275581
Most possibly problem was caused by the same reason as PR28400. This change
bypasses it by using CallbackVH instead of AssertingVH.
Differential Revision: https://reviews.llvm.org/D20957
llvm-svn: 275563
Summary:
In preparation for changing GlobalsAA to stop assuming that intrinsics
can't read arbitrary globals, we need to make sure GlobalsAA is querying
function attributes rather than relying on this assumption.
This patch was inspired by: http://reviews.llvm.org/D20206
Reviewers: jmolloy, hfinkel
Subscribers: eli.friedman, llvm-commits
Differential Revision: https://reviews.llvm.org/D21318
llvm-svn: 275433
constant hoisting. It not only takes into account the number of uses and the
cost of expressions in which constants appear, but now also the resulting
integer range of the offsets. Thus, the algorithm maximizes the number of uses
within an integer range that will enable more efficient code generation. On
ARM, for example, this will enable code size optimisations because less
negative offsets will be created. Negative offsets/immediates are not supported
by Thumb1 thus preventing more compact instruction encoding.
Differential Revision: http://reviews.llvm.org/D21183
llvm-svn: 275382
Treat loads which clip before the start of a global initializer the same
way we treat clipping beyond the end of the initializer: use zeros.
llvm-svn: 275345
Summary:
This is necessary for D21771. In order to add the hotness attribute to
optimization remarks we need BFI to be available in all passes that emit
optimization remarks.
However we don't want to pay for computing BFI unless the hotness
attribute is requested.
This is achieved by making BFI lazy at the very high-level through a new
analysis pass -- BFI is not calculated unless requested.
I am adding a test to check the laziness under D21771 where the first
user of the analysis is added.
Reviewers: hfinkel, dexonsmith, davidxl
Subscribers: davidxl, dexonsmith, llvm-commits
Differential Revision: http://reviews.llvm.org/D22141
llvm-svn: 275250
Summary:
Refactored the profitability analysis out of the IC promotion pass and
into lib/Analysis so that it can be accessed by the summary index
builder in a follow-on patch to enable IC promotion in ThinLTO (D21932).
Reviewers: davidxl, xur
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D22182
llvm-svn: 275216
This patch simplifies the graph builder by encoding nodes as {Value,
Dereference Level} pairs. This lets us kill edge types, and allows us to
get rid of hacks in StratifiedSets (like addAttrsBelow/...). This
simplification also allows us to remove InstantiatedRelations and
InstantiatedAttrs.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D22080
llvm-svn: 275122
Summary:
For sample-based PGO, using BFI to calculate callsite count is sometime not accurate. This is because with sampling based approach, if a callsite resides in a hot loop deeply nested in a bunch of cold branches, the callsite's BFI frequency would be inaccurately calculated due to lack of samples in the cold branch.
E.g.
if (A1 && A2 && A3 && ..... && A10) {
for (i=0; i < 100000000; i++) {
callsite();
}
}
Assume that A1 to A100 are all 100% taken, and callsite has 1000 samples and thus is considerred hot. Because the loop's trip count is huge, it's normal that all branches outside the loop has no sample at all. As a result, we can only use static branch probability to derive the the frequency of the loop header. Assuming that static heuristic thinks each branch is 50% taken, then the count calculated from BFI will be 1/(2^10) of the actual value.
In order to get more accurate callsite count, we directly annotate the weight on the call instruction, and directly use it when checking callsite hotness.
Note that this mechanism can also be shared by instrumentation based callsite hotness analysis. The side benefit is that it breaks the dependency from Inliner to BFI as call count is embedded in the IR.
Reviewers: davidxl, eraman, dnovillo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D22118
llvm-svn: 275073
This subtle change to getModRefInfo(Instruction, ImmutableCallSite) is to
ensure that the semantics are equal to that of getModRefInfo(CS1, CS2) when
the Instruction is a call-site.
This is now more in line with getModRefInfo generally: it returns Mod when
I modifies a memory location that is accessed (read or written) by CS and
Ref when I reads a memory location that is written by CS.
From a grep of the code, the only uses of this particular getModRefInfo
overload are in MemorySSA and MemCpyOptimizer, and they only care about
where the result is MR_NoModRef or not. Therefore, this change should have
no visible effect.
Separated out from D17279 upon request.
llvm-svn: 275065
For functions which are known to return a specific argument, pointer-comparison
folding can look through the function calls as part of its analysis.
Differential Revision: http://reviews.llvm.org/D9387
llvm-svn: 275039
For functions which are known to return their argument,
isDereferenceableAndAlignedPointer can examine the argument value.
Differential Revision: http://reviews.llvm.org/D9384
llvm-svn: 275038
When building SCEVs, if a function is known to return its argument, then we can
build the SCEV using the corresponding argument value.
Differential Revision: http://reviews.llvm.org/D9381
llvm-svn: 275037
If a function is known to return one of its arguments, we can use that in order
to compute known bits of the return value.
Differential Revision: http://reviews.llvm.org/D9397
llvm-svn: 275036
Motivated by the work on the llvm.noalias intrinsic, teach BasicAA to look
through returned-argument functions when answering queries. This is essential
so that we don't loose all other AA information when supplementing with
llvm.noalias.
Differential Revision: http://reviews.llvm.org/D9383
llvm-svn: 275035
This removes a few fields from the graph builder by making us compute
things (that we'd always compute anyway) more eagerly.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D22009
llvm-svn: 274957
We can fold truncs whose operand feeds from a load, if the trunc value
is available through a prior load/store.
This change is from: http://reviews.llvm.org/D21246, which folded the
trunc but missed the bitcast or ptrtoint/inttoptr required in the RAUW
call, when the load type didnt match the prior load/store type.
Differential Revision: http://reviews.llvm.org/D21791
llvm-svn: 274853
friend definitions.
Based on the experiments Sean Silva and Reid did, this seems the safest
course of action and also will work around a questionable warning
provided by GCC6 on the old form of the code. Thanks for Davide pointing
out the issue and other suggesting ways to fix.
llvm-svn: 274740
"More things" = StratifiedAttrs and various bits like interprocedural
summaries.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21964
llvm-svn: 274592
StratifiedSets (as implemented) is very fast, but its accuracy is also
limited. If we take a more aggressive andersens-like approach, we can be
way more accurate, but we'll also end up being slower.
So, we've decided to split CFLAA into CFLSteensAA and CFLAndersAA.
Long-term, we want to end up in a place where CFLSteens is queried
first; if it can provide an answer, great (since queries are basically
map lookups). Otherwise, we'll fall back to CFLAnders, BasicAA, etc.
This patch splits everything out so we can try to do something like
that when we get a reasonable CFLAnders implementation.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21910
llvm-svn: 274589
Summary:
This complements the earlier addition of IntrWriteMem and IntrWriteArgMem
LLVM intrinsic properties, see D18291.
Also start using the attribute for memset, memcpy, and memmove intrinsics,
and remove their special-casing in BasicAliasAnalysis.
Reviewers: reames, joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18714
llvm-svn: 274485
This actually uncovered a surprisingly large chain of ultimately unused
TLI args.
From what I can gather, this argument is a remnant of when
isKnownNonNull would look at the TLI directly.
The current approach seems to be that InferFunctionAttrs runs early in
the pipeline and uses TLI to annotate the TLI-dependent non-null
information as return attributes.
This also removes the dependence of functionattrs on TLI altogether.
llvm-svn: 274455
This patch makes CFLAA answer some ModRef queries. Because we don't
distinguish between reading/writing when making StratifiedSets, we're
unable to offer any of the readonly-related answers.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21858
llvm-svn: 274197
This is breaking an optimizaton remark test in clang. I've identified a couple fixes for that, but want to understand it better before I commit to anything.
llvm-svn: 274102
If a operation for a recurrence is an addition with no signed wrap and both input sign bits are 0, then the result sign bit must also be 0. Similar for the negative case.
I found this deficiency while playing around with a loop in the x86 backend that contained a signed division that could be optimized into an unsigned division if we could prove both inputs were positive. One of them being the loop induction variable. With this patch we can perform the conversion for this case. One of the test cases here is a contrived variation of the loop I was looking at.
Differential revision: http://reviews.llvm.org/D21493
llvm-svn: 274098
This patch enhances dot graph viewer to show hot regions
with hot bbs/edges displayed in red. The ratio of the bb
freq to the max freq of the function needs to be no less
than the value specified by view-hot-freq-percent option.
The default value is 10 (i.e. 10%).
llvm-svn: 273996
MBFI supports profile count dumping and function
name based filtering. Add these two feature to
BFI as well. The filtering option is shared between
BFI and MBFI: -view-bfi-func-name=..
llvm-svn: 273992
BFI and MBFI's dot traits class share most of the
code and all future enhancement. This patch extracts
common implementation into base class BFIDOTGraphTraitsBase.
This patch also enables BFI graph to show branch probability
on edges as MBFI does before.
llvm-svn: 273990
the new pass manager.
This adds operator<< overloads for the various bits of the
LazyCallGraph, dump methods for use from the debugger, and debug logging
using them to the CGSCC pass manager.
Having this was essential for debugging the call graph update patch, and
I've extracted what I could from that patch here to minimize the delta.
llvm-svn: 273961
Apparently, MSVC complains if there's an implicit conversion from
`unsigned` to `unsigned long long`, if the `unsigned` is the result of
a bit shift.
llvm-svn: 273955
It did not handle correctly cases without GEP.
The following loop wasn't vectorized:
for (int i=0; i<len; i++)
*to++ = *from++;
I use getPtrStride() to find Stride for memory access and return 0 is the Stride is not 1 or -1.
Re-commit rL273257 - revision: http://reviews.llvm.org/D20789
llvm-svn: 273864
This intrinsic safely loads a function pointer from a virtual table pointer
using type metadata. This intrinsic is used to implement control flow integrity
in conjunction with virtual call optimization. The virtual call optimization
pass will optimize away llvm.type.checked.load intrinsics associated with
devirtualized calls, thereby removing the type check in cases where it is
not needed to enforce the control flow integrity constraint.
This patch also introduces the capability to copy type metadata between
global variables, and teaches the virtual call optimization pass to do so.
Differential Revision: http://reviews.llvm.org/D21121
llvm-svn: 273756
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
This patch also has a refactor that kills StratifiedAttr, and leaves us
with StratifiedAttrs, because having both was mildly redundant.
This patch makes us correctly handle stratified attributes when doing
interprocedural analysis. It also adds another attribute, AttrCaller,
which acts like AttrUnknown. We can filter out AttrCaller values when
during interprocedural analysis, since the caller should have
information about what arguments it's passing to its callee.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21645
llvm-svn: 273636
Summary:
This instcombine rule folds away trunc operations that have value available from a prior load or store.
This kind of code can be generated as a result of GVN widening the load or from source code as well.
Reviewers: reames, majnemer, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21246
llvm-svn: 273608
Previously, we just unified any arguments that seemed to be related to
each other. With this patch, we now respect dereference levels, etc.
which should make us substantially more accurate. Proper handling of
StratifiedAttrs will be done in a later patch.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21536
llvm-svn: 273596
This was noted in http://reviews.llvm.org/D21610 . The previous code
predated the use of APInt ( http://reviews.llvm.org/rL47654 ), so it
had to account for the fixed width of uint64_t.
Now that we're using the variable width APInt, we can remove some
complexity.
llvm-svn: 273584
When simplifying a load we need to make sure that the type of the
simplified value matches the type of the instruction we're processing.
In theory, we can handle casts here as we deal with constant data, but
since it's not implemented at the moment, we at least need to bail out.
This fixes PR28262.
llvm-svn: 273562
This is similar to the computeKnownBits improvement in rL268479.
There's probably more we can do for vector logic instructions, but
this should let us see non-splat constant masking ops that can
become vector selects instead of and/andn/or sequences.
Differential Revision: http://reviews.llvm.org/D21610
llvm-svn: 273459
It did not handle correctly cases without GEP.
The following loop wasn't vectorized:
for (int i=0; i<len; i++)
*to++ = *from++;
I use getPtrStride() to find Stride for memory access and return 0 is the Stride is not 1 or -1.
Differential revision: http://reviews.llvm.org/D20789
llvm-svn: 273257
This patch makes us perform interprocedural analysis on functions that
don't have internal linkage. It also removes a test that should've been
deleted in an earlier commit (since other tests now cover everything
that the newly-removed test covers).
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21513
llvm-svn: 273229
This patch adds function summaries, so that we don't need to recompute
various properties about function parameters/return values at each
callsite of a function. It also adds many interprocedural tests for
CFLAA.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21475#inline-182390
llvm-svn: 273219
By moving this transform to InstSimplify from InstCombine, we sidestep the problem/question
raised by PR27869:
https://llvm.org/bugs/show_bug.cgi?id=27869
...where InstCombine turns an icmp+zext into a shift causing us to miss the fold.
Credit to David Majnemer for a draft patch of the changes to InstructionSimplify.cpp.
Differential Revision: http://reviews.llvm.org/D21512
llvm-svn: 273200
On the surface, this might not look like it does anything... but
actually it brings in the declaration "extern template class
AnalysisManager<Loop>;", which suppresses the instantiation of the
constructor, which avoids the funny interaction between "extern
template" and -fvisibility-inlines-hidden.
llvm-svn: 273133
Access it through -passes=print-lcg-dot
Let me know any suggestions for changing the rendering; I'm not
particularly attached to what is implemented here.
llvm-svn: 273082
The way we elide max expressions when computing trip counts is incorrect
-- it breaks cases like this:
```
static int wrapping_add(int a, int b) {
return (int)((unsigned)a + (unsigned)b);
}
void test() {
volatile int end_buf = 2147483548; // INT_MIN - 100
int end = end_buf;
unsigned counter = 0;
for (int start = wrapping_add(end, 200); start < end; start++)
counter++;
print(counter);
}
```
Note: the `NoWrap` variable that was being tested has little to do with
the values flowing into the max expression; it is a property of the
induction variable.
test/Transforms/LoopUnroll/nsw-tripcount.ll was added to solely test
functionality I'm reverting in this change, so I've deleted the test
fully.
llvm-svn: 273079
This is a functional change for LLE and LDist. The other clients (LV,
LVerLICM) already had this explicitly enabled.
The temporary boolean parameter to LAA is removed that allowed turning
off speculation of symbolic strides. This makes LAA's caching interface
LAA::getInfo only take the loop as the parameter. This makes the
interface more friendly to the new Pass Manager.
The flag -enable-mem-access-versioning is moved from LV to a LAA which
now allows turning off speculation globally.
llvm-svn: 273064
pass manager passes' `run` methods.
This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.
This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.
While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.
Thanks to Sean and Hal for bouncing ideas for this with me in IRC.
llvm-svn: 272978
This is still NFCI, so the list of clients that allow symbolic stride
speculation does not change (yes: LV and LoopVersioningLICM, no: LLE,
LDist). However since the symbolic strides are now managed by LAA
rather than passed by client a new bool parameter is used to enable
symbolic stride speculation.
The existing test Transforms/LoopVectorize/version-mem-access.ll checks
that stride speculation is performed for LV.
The previously added test Transforms/LoopLoadElim/symbolic-stride.ll
ensures that no speculation is performed for LLE.
The next patch will change the functionality and turn on symbolic stride
speculation in all of LAA's clients and remove the bool parameter.
llvm-svn: 272970
We should update results of the BranchProbabilityInfo after removing block in JumpThreading. Otherwise
we will get dangling pointer inside BranchProbabilityInfo cache.
Differential Revision: http://reviews.llvm.org/D20957
llvm-svn: 272891
This patch makes CFLAA ignore non-pointer values, since we can now
sanely do that with the escaping/unknown attributes. Additionally,
StratifiedAttrs make more sense to sit on nodes than edges (since
they're properties of values, and ultimately end up on the nodes of
StratifiedSets). So, this patch puts said attributes on nodes.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21387
llvm-svn: 272833
We would fail to validate the type of the tan function which would cause
downstream users of isValidProtoForLibFunc to assert.
This fixes PR28143.
llvm-svn: 272802
Use Optional<T> to denote the absence of a solution, not
SCEVCouldNotCompute. This makes the usage of SolveQuadraticEquation
somewhat simpler.
llvm-svn: 272752
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
This change teaches llvm::isGuaranteedToTransferExecutionToSuccessor
that calls to @llvm.assume always terminate. Most other relevant
intrinsics should be covered by the "CS.onlyReadsMemory() ||
CS.onlyAccessesArgMemory()" bit but we were missing @llvm.assumes
because we state that it clobbers memory.
Added an LICM test case, but this change is not specific to LICM.
llvm-svn: 272703
This patch also includes some refactoring.
Prior to this patch, we tagged all CFLAA attributes as unknown. This is
suboptimal, since it meant that any Value used as an argument would be
considered to alias any other Value that existed.
Now that we have the machinery to tag sets below the set for an
arbitrary value with attributes, it's okay to be less conservative with
arguments. (Specifically, we still tag the set under an argument with
unknown).
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21262
llvm-svn: 272690
This patch refactors CFLAA's graph building code. This makes keeping
track of common state (TargetLibraryInfo, ...) easier.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21261
llvm-svn: 272688
Summary:
The SimplifyLibCalls part of InstCombine generates calls to those otherwise.
I wonder if at some point we shouldn't just call disableAllFunctions() and
then enable functions on a whitelist basis...
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=96495
Reviewers: arsenm, tstellarAMD
Subscribers: llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21282
llvm-svn: 272664
This is a bit gnarly since LVI is maintaining its own cache.
I think this port could be somewhat cleaner, but I'd rather not spend
too much time on it while we still have the old pass hanging around and
limiting how much we can clean things up.
Once the old pass is gone it will be easier (less time spent) to clean
it up anyway.
This is the last dependency needed for porting JumpThreading which I'll
do in a follow-up commit (there's no printer pass for LVI or anything to
test it, so porting a pass that depends on it seems best).
I've been mostly following:
r269370 / D18834 which ported Dependence Analysis
r268601 / D19839 which ported BPI
llvm-svn: 272593
Summary:
AAResults::callCapturesBefore would previously ignore operand
bundles. It was possible for a later instruction to miss its memory
dependency on a call site that would only access the pointer through a
bundle.
Patch by Oscar Blumberg!
Reviewers: sanjoy
Differential Revision: http://reviews.llvm.org/D21286
llvm-svn: 272580
Summary:
Make isGuaranteedToExecute use the
isGuaranteedToTransferExecutionToSuccessor helper, and make that helper
a bit more accurate.
There's a potential performance impact here from assuming that arbitrary
calls might not return. This probably has little impact on loads and
stores to a pointer because most things alias analysis can reason about
are dereferenceable anyway. The other impacts, like less aggressive
hoisting of sdiv by a variable and less aggressive hoisting around
volatile memory operations, are unlikely to matter for real code.
This also impacts SCEV, which uses the same helper. It's a minor
improvement there because we can tell that, for example, memcpy always
returns normally. Strictly speaking, it's also introducing
a bug, but it's not any worse than everywhere else we assume readonly
functions terminate.
Fixes http://llvm.org/PR27857.
Reviewers: hfinkel, reames, chandlerc, sanjoy
Subscribers: broune, llvm-commits
Differential Revision: http://reviews.llvm.org/D21167
llvm-svn: 272489
Add an option to enable the analysis of MachineFunction register
usage to extract the list of clobbered registers.
When enabled, the CodeGen order is changed to be bottom up on the Call
Graph.
The analysis is split in two parts, RegUsageInfoCollector is the
MachineFunction Pass that runs post-RA and collect the list of
clobbered registers to produce a register mask.
An immutable pass, RegisterUsageInfo, stores the RegMask produced by
RegUsageInfoCollector, and keep them available. A future tranformation
pass will use this information to update every call-sites after
instruction selection.
Patch by Vivek Pandya <vivekvpandya@gmail.com>
Differential Revision: http://reviews.llvm.org/D20769
llvm-svn: 272403
Prior to this patch, we used argument/global stratified attributes in
order to note that a value could have come from either dereferencing a
global/arg, or from the assignment from a global/arg.
Now, AttrUnknown is placed on sets when we see a dereference, instead of
the global/arg attributes. This allows us to be more aggressive in the
future when we see global/arg attributes without AttrUnknown.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21110
llvm-svn: 272335
Instead of directly using MaxFunctionCount and function entry count to determine callee hotness, use the isHotFunction/isColdFunction methods provided by ProfileSummaryInfo.
Differential revision: http://reviews.llvm.org/D21045
llvm-svn: 272321
We can safely rely on a NoWrap add recurrence causing UB down the road
only if we know the loop does not have a exit expressed in a way that is
opaque to ScalarEvolution (e.g. by a function call that conditionally
calls exit(0)).
I believe with this change PR28012 is fixed.
Note: I had to change some llvm-lit tests in LoopReroll, since it looks
like they were depending on this incorrect behavior.
llvm-svn: 272237
This is NFC as far as externally visible behavior is concerned, but will
keep us from spinning in the worklist traversal algorithm unnecessarily.
llvm-svn: 272182
Absence of may-unwind calls is not enough to guarantee that a
UB-generating use of an add-rec poison in the loop latch will actually
cause UB. We also need to guard against calls that terminate the thread
or infinite loop themselves.
This partially addresses PR28012.
llvm-svn: 272181
The worklist algorithm introduced in rL271151 didn't check to see if the
direct users of the post-inc add recurrence propagates poison. This
change fixes the problem and makes the code structure more obvious.
Note for release managers: correctness wise, this bug wasn't a
regression introduced by rL271151 -- the behavior of SCEV around
post-inc add recurrences was strictly improved (in terms of correctness)
in rL271151.
llvm-svn: 272179
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
llvm-svn: 272126
This patch does a few things:
- Unifies AttrAll and AttrUnknown (since they were used for more or less
the same purpose anyway).
- Introduces AttrEscaped, an attribute that notes that a value escapes
our analysis for a given set, but not that an unknown value flows into
said set.
- Removes functions that take bit indices, since we also had functions
that took bitsets, and the use of both (with similar names) was
unclear and bug-prone.
Patch by Jia Chen.
Differential Revision: http://reviews.llvm.org/D21000
llvm-svn: 272040
In some cases, when simplifying with SCEV, we might consider pointer values as
just usual integer values. Thus, we might get a different type from what we
had originally in the map of simplified values, and hence we need to check
types before operating on the values.
This fixes PR28015.
llvm-svn: 271931