Commit Graph

234 Commits

Author SHA1 Message Date
Akira Hatanaka 75be84f3c2 [ObjCArc] Do not dereference an invalidated iterator.
Fix a bug in ARC contract pass where an iterator that pointed to a
deleted instruction was dereferenced.

It appears that tryToContractReleaseIntoStoreStrong was incorrectly
assuming that a call to objc_retain would not immediately follow a call
to objc_release.

rdar://problem/25276306

llvm-svn: 299507
2017-04-05 03:44:09 +00:00
Reid Kleckner b518054b87 Rename AttributeSet to AttributeList
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.

Rename AttributeSetImpl to AttributeListImpl to follow suit.

It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.

Reviewers: sanjoy, javed.absar, chandlerc, pete

Reviewed By: pete

Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits

Differential Revision: https://reviews.llvm.org/D31102

llvm-svn: 298393
2017-03-21 16:57:19 +00:00
Akira Hatanaka f003cd3344 Remove redundant code. NFC.
llvm-svn: 296219
2017-02-25 00:59:49 +00:00
Akira Hatanaka 2b882050ce Clean up ObjCARCOpts.cpp. NFC.
I removed unused functions and variables and moved variables closer to
their uses.

llvm-svn: 296218
2017-02-25 00:53:38 +00:00
Chris Bieneman 05c279fc4b [CMake] NFC. Updating CMake dependency specifications
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.

llvm-svn: 287206
2016-11-17 04:36:50 +00:00
Chandler Carruth d9ef4b6601 Only log the visit of a return instruction if we in fact found a return
instruction.

This avoids dereferencing null in the debug logging if the instruction
was not in fact a return instruction. This potential bug was found by
PVS-Studio.

This actually fixes the last of the "dereferenced a pointer before
checking it for null" reports in the recent PVS-Studio run. However,
there are quite a few reports of this nature that I did not do anything
to fix because they are pretty glaring false positives. They usually
took the form of quite clear correlated checks or a check made in
a separate function. I've even added asserts anywhere this correlation
wasn't pretty obvious and fundamental to the code.

llvm-svn: 285988
2016-11-04 06:59:50 +00:00
Mehdi Amini a6f81ca8ea Use StringRef in ARCRuntimeEntryPoints APIs (NFC)
llvm-svn: 283288
2016-10-05 01:15:04 +00:00
Duncan P. N. Exon Smith 11c06ea55a ObjCARC: Don't look at users of ConstantData
Stop looking at users of UndefValue and ConstantPointerNull in the
objective C ARC optimizers.  The other users aren't actually
interesting, since they're not pointing at a particular object.  I
imagine these calls could be optimized through -instcombine... maybe
they already are?

These early returns will be required at some point in the future, with a
WIP patch that asserts when someone accesses a use-list on ConstantData.

llvm-svn: 282338
2016-09-24 21:01:20 +00:00
Akira Hatanaka 6d5a29489a Address Pete's review comment and define OrigArg on its own line.
This is a follow-up to r281419.

llvm-svn: 281421
2016-09-13 23:53:43 +00:00
Akira Hatanaka dea090e6b2 [ObjCARC] Traverse chain downwards to replace uses of argument passed to
ObjC library call with call return.

ARC contraction tries to replace uses of an argument passed to an
objective-c library call with the call return value. For example, in the
following IR, it replaces uses of argument %9 and uses of the values
discovered traversing the chain upwards (%7 and %8) with the call return
%10, if they are dominated by the call to @objc_autoreleaseReturnValue.
This transformation enables code-gen to tail-call the call to
@objc_autoreleaseReturnValue, which is necessary to enable auto release
return value optimization.

%7 = tail call i8* @objc_loadWeakRetained(i8** %6)
%8 = bitcast i8* %7 to %0*
%9 = bitcast %0* %8 to i8*
%10 = tail call i8* @objc_autoreleaseReturnValue(i8* %9)
ret %0* %8

Since r276727, llvm started removing redundant bitcasts and as a result
started feeding the following IR to ARC contraction:

%7 = tail call i8* @objc_loadWeakRetained(i8** %6)
%8 = bitcast i8* %7 to %0*
%9 = tail call i8* @objc_autoreleaseReturnValue(i8* %7)
ret %0* %8

ARC contraction no longer does the optimization described above since it
only traverses the chain upwards and fails to recognize that the
function return can be replaced by the call return. This commit changes
ARC contraction to traverse the chain downwards too and replace uses of
bitcasts with the call return.

rdar://problem/28011339

Differential Revision: https://reviews.llvm.org/D24523

llvm-svn: 281419
2016-09-13 23:43:11 +00:00
Justin Bogner cd1d5aaf2e Replace a few more "fall through" comments with LLVM_FALLTHROUGH
Follow up to r278902. I had missed "fall through", with a space.

llvm-svn: 278970
2016-08-17 20:30:52 +00:00
Justin Bogner b03fd12cef Replace "fallthrough" comments with LLVM_FALLTHROUGH
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.

llvm-svn: 278902
2016-08-17 05:10:15 +00:00
Benjamin Kramer 135f735af1 Apply clang-tidy's modernize-loop-convert to most of lib/Transforms.
Only minor manual fixes. No functionality change intended.

llvm-svn: 273808
2016-06-26 12:28:59 +00:00
David Majnemer d770877328 Switch more loops to be range-based
This makes the code a little more concise, no functional change is
intended.

llvm-svn: 273644
2016-06-24 04:05:21 +00:00
Pete Cooper 1929b5539a Form objc_storeStrong in the presence of bitcasts.
objc_storeStrong can be formed from a sequence such as

  %0 = tail call i8* @objc_retain(i8* %p) nounwind
  %tmp = load i8*, i8** @x, align 8
  store i8* %0, i8** @x, align 8
  tail call void @objc_release(i8* %tmp) nounwind

The code was already looking through bitcasts for most of the values
involved, but had missed one case where the pointer operand for the
store was a bitcast.  Ultimately the pointer for the load and store
have to be the same value, after stripping casts.

llvm-svn: 270955
2016-05-27 02:13:53 +00:00
Filipe Cabecinhas 0da9937517 Unify XDEBUG and EXPENSIVE_CHECKS (into the latter), and add an option to the cmake build to enable them.
Summary:
Historically, we had a switch in the Makefiles for turning on "expensive
checks". This has never been ported to the cmake build, but the
(dead-ish) code is still around.

This will also make it easier to turn it on in buildbots.

Reviewers: chandlerc

Subscribers: jyknight, mzolotukhin, RKSimon, gberry, llvm-commits

Differential Revision: http://reviews.llvm.org/D19723

llvm-svn: 268050
2016-04-29 15:22:48 +00:00
Andrew Kaylor aa641a5171 Re-commit optimization bisect support (r267022) without new pass manager support.
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267231
2016-04-22 22:06:11 +00:00
Vedant Kumar 6013f45f92 Revert "Initial implementation of optimization bisect support."
This reverts commit r267022, due to an ASan failure:

  http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549

llvm-svn: 267115
2016-04-22 06:51:37 +00:00
Andrew Kaylor f0f279291c Initial implementation of optimization bisect support.
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.

The bisection is enabled using a new command line option (-opt-bisect-limit).  Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit.  A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.

The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check.  Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute.  A new function call has been added for module and SCC passes that behaves in a similar way.

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267022
2016-04-21 17:58:54 +00:00
Mehdi Amini b550cb1750 [NFC] Header cleanup
Removed some unused headers, replaced some headers with forward class declarations.

Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'

Patch by Eugene Kosov <claprix@yandex.ru>

Differential Revision: http://reviews.llvm.org/D19219

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
2016-04-18 09:17:29 +00:00
Sanjoy Das 5ce3272833 Don't IPO over functions that can be de-refined
Summary:
Fixes PR26774.

If you're aware of the issue, feel free to skip the "Motivation"
section and jump directly to "This patch".

Motivation:

I define "refinement" as discarding behaviors from a program that the
optimizer has license to discard.  So transforming:

```
void f(unsigned x) {
  unsigned t = 5 / x;
  (void)t;
}
```

to

```
void f(unsigned x) { }
```

is refinement, since the behavior went from "if x == 0 then undefined
else nothing" to "nothing" (the optimizer has license to discard
undefined behavior).

Refinement is a fundamental aspect of many mid-level optimizations done
by LLVM.  For instance, transforming `x == (x + 1)` to `false` also
involves refinement since the expression's value went from "if x is
`undef` then { `true` or `false` } else { `false` }" to "`false`" (by
definition, the optimizer has license to fold `undef` to any non-`undef`
value).

Unfortunately, refinement implies that the optimizer cannot assume
that the implementation of a function it can see has all of the
behavior an unoptimized or a differently optimized version of the same
function can have.  This is a problem for functions with comdat
linkage, where a function can be replaced by an unoptimized or a
differently optimized version of the same source level function.

For instance, FunctionAttrs cannot assume a comdat function is
actually `readnone` even if it does not have any loads or stores in
it; since there may have been loads and stores in the "original
function" that were refined out in the currently visible variant, and
at the link step the linker may in fact choose an implementation with
a load or a store.  As an example, consider a function that does two
atomic loads from the same memory location, and writes to memory only
if the two values are not equal.  The optimizer is allowed to refine
this function by first CSE'ing the two loads, and the folding the
comparision to always report that the two values are equal.  Such a
refined variant will look like it is `readonly`.  However, the
unoptimized version of the function can still write to memory (since
the two loads //can// result in different values), and selecting the
unoptimized version at link time will retroactively invalidate
transforms we may have done under the assumption that the function
does not write to memory.

Note: this is not just a problem with atomics or with linking
differently optimized object files.  See PR26774 for more realistic
examples that involved neither.

This patch:

This change introduces a new set of linkage types, predicated as
`GlobalValue::mayBeDerefined` that returns true if the linkage type
allows a function to be replaced by a differently optimized variant at
link time.  It then changes a set of IPO passes to bail out if they see
such a function.

Reviewers: chandlerc, hfinkel, dexonsmith, joker.eph, rnk

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D18634

llvm-svn: 265762
2016-04-08 00:48:30 +00:00
Duncan P. N. Exon Smith e9bc579c37 ADT: Remove == and != comparisons between ilist iterators and pointers
I missed == and != when I removed implicit conversions between iterators
and pointers in r252380 since they were defined outside ilist_iterator.

Since they depend on getNodePtrUnchecked(), they indirectly rely on UB.
This commit removes all uses of these operators.  (I'll delete the
operators themselves in a separate commit so that it can be easily
reverted if necessary.)

There should be NFC here.

llvm-svn: 261498
2016-02-21 20:39:50 +00:00
Frederic Riss 009d60650d [ObjCARC] Handle ARCInstKind::ClaimRV in OptimizeIndividualCalls.
When support for objc_unsafeClaimAutoreleasedReturnValue has been added to the
ARC optimizer in r258970, one case was missed which would lead the optimizer
to execute an llvm_unreachable. In this case, just handle ClaimRV in the same
way we handle RetainRV.

llvm-svn: 261134
2016-02-17 18:51:27 +00:00
John McCall 3fe604f89f Add support for objc_unsafeClaimAutoreleasedReturnValue to the
ObjC ARC Optimizer.

The main implication of this is:

1. Ensuring that we treat it conservatively in terms of optimization.
2. We put the ASM marker on it so that the runtime can recognize
objc_unsafeClaimAutoreleasedReturnValue from releaseRV.

<rdar://problem/21567064>

Patch by Michael Gottesman!

llvm-svn: 258970
2016-01-27 19:05:08 +00:00
Benjamin Kramer 45275a4d3c Make more headers self-contained.
A lot of this comes from the new complete type requirement of DenseMap.

llvm-svn: 258956
2016-01-27 18:03:37 +00:00
Chris Bieneman e49730d4ba Remove autoconf support
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html

"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi

Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark

Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits

Differential Revision: http://reviews.llvm.org/D16471

llvm-svn: 258861
2016-01-26 21:29:08 +00:00
Alexander Kornienko d0af3b3178 Refactor: Simplify boolean conditional return statements in lib/Transforms/ObjCARC
Summary: Use clang-tidy to simplify boolean conditional return statements

Reviewers: craig.topper, bkramer, chandlerc, gottesmm

Subscribers: llvm-commits

Patch by Richard Thomson!

Differential Revision: http://reviews.llvm.org/D9999

llvm-svn: 256502
2015-12-28 16:19:08 +00:00
Duncan P. N. Exon Smith 1e59a66c69 ObjCARC: Remove implicit ilist iterator conversions, NFC
llvm-svn: 250756
2015-10-19 23:20:14 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Chandler Carruth 0f792189a4 [ARC] Pull the ObjC ARC components that really serve the role of
analyses into LLVM's Analysis library rather than having them in
a Transforms library.

This is motivated by the need to have the core AliasAnalysis
infrastructure be aware of the ObjCARCAliasAnalysis. However, it also
seems like a nice and clean separation. Everything was very easy to move
and this doesn't create much clutter in the analysis library IMO.

Differential Revision: http://reviews.llvm.org/D12133

llvm-svn: 245541
2015-08-20 08:06:03 +00:00
Chandler Carruth d541e7304f [PM/AA] Run clang-format over the ObjCARC Alias Analysis code to
normalize its formatting before I make more substantial changes.

llvm-svn: 245024
2015-08-14 03:57:00 +00:00
Chandler Carruth b4ebdf3d72 [PM/AA] Don't bother forward declaring Function and Value, just include
their headers.

llvm-svn: 245023
2015-08-14 03:55:36 +00:00
Benjamin Kramer df005cbe19 Fix some comment typos.
llvm-svn: 244402
2015-08-08 18:27:36 +00:00
Chandler Carruth 194f59ca5d [PM/AA] Extract the ModRef enums from the AliasAnalysis class in
preparation for de-coupling the AA implementations.

In order to do this, they had to become fake-scoped using the
traditional LLVM pattern of a leading initialism. These can't be actual
scoped enumerations because they're bitfields and thus inherently we use
them as integers.

I've also renamed the behavior enums that are specific to reasoning
about the mod/ref behavior of functions when called. This makes it more
clear that they have a very narrow domain of applicability.

I think there is a significantly cleaner API for all of this, but
I don't want to try to do really substantive changes for now, I just
want to refactor the things away from analysis groups so I'm preserving
the exact original design and just cleaning up the names, style, and
lifting out of the class.

Differential Revision: http://reviews.llvm.org/D10564

llvm-svn: 242963
2015-07-22 23:15:57 +00:00
Alexander Kornienko f00654e31b Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)
Apparently, the style needs to be agreed upon first.

llvm-svn: 240390
2015-06-23 09:49:53 +00:00
Chandler Carruth c3f49eb451 [PM/AA] Hoist the AliasResult enum out of the AliasAnalysis class.
This will allow classes to implement the AA interface without deriving
from the class or referencing an internal enum of some other class as
their return types.

Also, to a pretty fundamental extent, concepts such as 'NoAlias',
'MayAlias', and 'MustAlias' are first class concepts in LLVM and we
aren't saving anything by scoping them heavily.

My mild preference would have been to use a scoped enum, but that
feature is essentially completely broken AFAICT. I'm extremely
disappointed. For example, we cannot through any reasonable[1] means
construct an enum class (or analog) which has scoped names but converts
to a boolean in order to test for the possibility of aliasing.

[1]: Richard Smith came up with a "solution", but it requires class
templates, and lots of boilerplate setting up the enumeration multiple
times. Something like Boost.PP could potentially bundle this up, but
even that would be quite painful and it doesn't seem realistically worth
it. The enum class solution would probably work without the need for
a bool conversion.

Differential Revision: http://reviews.llvm.org/D10495

llvm-svn: 240255
2015-06-22 02:16:51 +00:00
Alexander Kornienko 70bc5f1398 Fixed/added namespace ending comments using clang-tidy. NFC
The patch is generated using this command:

tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
  -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
  llvm/lib/


Thanks to Eugene Kosov for the original patch!

llvm-svn: 240137
2015-06-19 15:57:42 +00:00
Eric Christopher 572e03a396 Fix "the the" in comments.
llvm-svn: 240112
2015-06-19 01:53:21 +00:00
Chandler Carruth ac80dc7532 [PM/AA] Remove the Location typedef from the AliasAnalysis class now
that it is its own entity in the form of MemoryLocation, and update all
the callers.

This is an entirely mechanical change. References to "Location" within
AA subclases become "MemoryLocation", and elsewhere
"AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps
out-of-tree folks update.

llvm-svn: 239885
2015-06-17 07:18:54 +00:00
Chandler Carruth 70c61c1a8a [PM/AA] Start refactoring AliasAnalysis to remove the analysis group and
port it to the new pass manager.

All this does is extract the inner "location" class used by AA into its
own full fledged type. This seems *much* cleaner as MemoryDependence and
soon MemorySSA also use this heavily, and it doesn't make much sense
being inside the AA infrastructure.

This will also make it much easier to break apart the AA infrastructure
into something that stands on its own rather than using the analysis
group design.

There are a few places where this makes APIs not make sense -- they were
taking an AliasAnalysis pointer just to build locations. I'll try to
clean those up in follow-up commits.

Differential Revision: http://reviews.llvm.org/D10228

llvm-svn: 239003
2015-06-04 02:03:15 +00:00
Pete Cooper 9e1d335697 Change Function::getIntrinsicID() to return an Intrinsic::ID. NFC.
Now that Intrinsic::ID is a typed enum, we can forward declare it and so return it from this method.

This updates all users which were either using an unsigned to store it, or had a now unnecessary cast.

llvm-svn: 237810
2015-05-20 17:16:39 +00:00
Pete Cooper 833f34d837 Convert PHI getIncomingValue() to foreach over incoming_values(). NFC.
We already had a method to iterate over all the incoming values of a PHI.  This just changes all eligible code to use it.

Ineligible code included anything which cared about the index, or was also trying to get the i'th incoming BB.

llvm-svn: 237169
2015-05-12 20:05:31 +00:00
Benjamin Kramer dd0ff85701 Remove empty non-virtual destructors or mark them =default when non-public
These add no value but can make a class non-trivially copyable. NFC.

llvm-svn: 234688
2015-04-11 15:32:26 +00:00
Benjamin Kramer 3a09ef64ee [CallSite] Make construction from Value* (or Instruction*) explicit.
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.

Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this: 
  if (auto CS = CallSite(V)) // think dyn_cast
instead of:
  if (CallSite CS = V)

This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.

llvm-svn: 234601
2015-04-10 14:50:08 +00:00
Benjamin Kramer 799003bf8c Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used.
llvm-svn: 232998
2015-03-23 19:32:43 +00:00
Michael Gottesman d63436fb2e One more try with unused.
llvm-svn: 232357
2015-03-16 08:00:27 +00:00
Michael Gottesman a0d2d3379e Add in an unreachable after a covered switch to appease certain bots.
llvm-svn: 232356
2015-03-16 07:46:34 +00:00
Michael Gottesman c219dd1de1 Remove a used that snuck in that seems to be triggering the MSVC buildbots.
llvm-svn: 232355
2015-03-16 07:34:17 +00:00
Michael Gottesman c01ab519e6 [objc-arc] Fix indentation of debug logging so it is easy to read the output.
llvm-svn: 232352
2015-03-16 07:02:39 +00:00
Michael Gottesman dd60f9bb09 [objc-arc] Make the ARC optimizer more conservative by forcing it to be non-safe in both direction, but mitigate the problem by noting that we just care if there was a further use.
The problem here is the infamous one direction known safe. I was
hesitant to turn it off before b/c of the potential for regressions
without an actual bug from users hitting the problem. This is that bug ;
).

The main performance impact of having known safe in both directions is
that often times it is very difficult to find two releases without a use
in-between them since we are so conservative with determining potential
uses. The one direction known safe gets around that problem by taking
advantage of many situations where we have two retains in a row,
allowing us to avoid that problem. That being said, the one direction
known safe is unsafe. Consider the following situation:

retain(x)
retain(x)
call(x)
call(x)
release(x)

Then we know the following about the reference count of x:

// rc(x) == N (for some N).
retain(x)
// rc(x) == N+1
retain(x)
// rc(x) == N+2
call A(x)
call B(x)
// rc(x) >= 1 (since we can not release a deallocated pointer).
release(x)
// rc(x) >= 0

That is all the information that we can know statically. That means that
we know that A(x), B(x) together can release (x) at most N+1 times. Lets
say that we remove the inner retain, release pair.

// rc(x) == N (for some N).
retain(x)
// rc(x) == N+1
call A(x)
call B(x)
// rc(x) >= 1
release(x)
// rc(x) >= 0

We knew before that A(x), B(x) could release x up to N+1 times meaning
that rc(x) may be zero at the release(x). That is not safe. On the other
hand, consider the following situation where we have a must use of
release(x) that x must be kept alive for after the release(x)**. Then we
know that:

// rc(x) == N (for some N).
retain(x)
// rc(x) == N+1
retain(x)
// rc(x) == N+2
call A(x)
call B(x)
// rc(x) >= 2 (since we know that we are going to release x and that that release can not be the last use of x).
release(x)
// rc(x) >= 1 (since we can not deallocate the pointer since we have a must use after x).
…
// rc(x) >= 1
use(x)

Thus we know that statically the calls to A(x), B(x) can together only
release rc(x) N times. Thus if we remove the inner retain, release pair:

// rc(x) == N (for some N).
retain(x)
// rc(x) == N+1
call A(x)
call B(x)
// rc(x) >= 1
…
// rc(x) >= 1
use(x)

We are still safe unless in the final … there are unbalanced retains,
releases which would have caused the program to blow up anyways even
before optimization occurred. The simplest form of must use is an
additional release that has not been paired up with any retain (if we
had paired the release with a retain and removed it we would not have
the additional use). This fits nicely into the ARC framework since
basically what you do is say that given any nested releases regardless
of what is in between, the inner release is known safe. This enables us to get
back the lost performance.

<rdar://problem/19023795>

llvm-svn: 232351
2015-03-16 07:02:36 +00:00