This version enhances the previous patch to add root initialization
as discussed here:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20070910/053455.html
Collector gives its subclasses control over generic algorithms:
unsigned NeededSafePoints; //< Bitmask of required safe points.
bool CustomReadBarriers; //< Default is to insert loads.
bool CustomWriteBarriers; //< Default is to insert stores.
bool CustomRoots; //< Default is to pass through to backend.
bool InitRoots; //< If set, roots are nulled during lowering.
It also has callbacks which collectors can hook:
/// If any of the actions are set to Custom, this is expected to
/// be overriden to create a transform to lower those actions to
/// LLVM IR.
virtual Pass *createCustomLoweringPass() const;
/// beginAssembly/finishAssembly - Emit module metadata as
/// assembly code.
virtual void beginAssembly(Module &M, std::ostream &OS,
AsmPrinter &AP,
const TargetAsmInfo &TAI) const;
virtual void finishAssembly(Module &M,
CollectorModuleMetadata &CMM,
std::ostream &OS, AsmPrinter &AP,
const TargetAsmInfo &TAI) const;
Various other independent algorithms could be implemented, but were
not necessary for the initial two collectors. Some examples are
listed here:
http://llvm.org/docs/GarbageCollection.html#collector-algos
llvm-svn: 42466
other than PPC64. Instead of fixing it, just remove it and fix all the
places that use it to use TargetData::getPointerSize() instead, as there
aren't very many. Most of the references were in DwarfWriter.cpp.
llvm-svn: 42419
It includes:
- location and of each safe point in machine code (identified by a
label)
- location of each root within the stack frame (identified by an
offset), including the metadata tag provided to llvm.gcroot in
the user program
- size of the stack frame (for collectors which want to cheat on
stack crawling :)
- and eventually will include liveness
It is to be populated by back-ends during code-generation.
CollectorModuleMetadata aggregates this information across the
entire module.
llvm-svn: 42418
instruction creation. No support yet for instruction introspection.
Also eliminated allocas from the Ocaml bindings for portability,
and avoided unnecessary casts.
llvm-svn: 42367
and time usage.
Fixup operator == to make this work, and add a resize method to DenseMap
so we can resize our hashtable once we know how big it should be.
llvm-svn: 42269
change is not useful in and of itself, but it lays the groundwork for combining
the dominator and postdominator implementations.
Also, factor a few methods that are common to DominatorTree and PostDominatorTree
into DominatorTreeBase. Again, this will make merging the two calculation methods
simpler in the future.
llvm-svn: 42248
keep f32 in SSE registers and f64 in x87. This
is effectively a new codegen mode.
Change addLegalFPImmediate to permit float and
double variants to do different things.
Adjust callers.
llvm-svn: 42246
bit width instead of number of words allocated, which
makes it actually work for int->APF conversions.
Adjust callers. Add const to one of the APInt constructors
to prevent surprising match when called with const
argument.
llvm-svn: 42210
returned a reference type. This patch allows operator*() to return a
non-reference type while still maintaining the old behavior when it
does return a reference type.
This patch was motivated when I tried to use "df_iterator" (see
llvm/ADT/DepthFirstIterator.h) as a "node_iterator", as df_iterator
does not return a reference type and thus we would get a compilation
error when trying to take the address of a temporary.
llvm-svn: 42151
function. The information isn't used heavily -- it's only used at the end
of exception handling emission -- so there's no need to cache it.
llvm-svn: 42078
- The naming prefix is LLVM.
- All types are represented using opaque references.
- Functions are not named LLVM{Type}{Method}; the names became
unreadable goop. Instead, they are named LLVM{ImperativeSentence}.
- Where an attribute only appears once in the class hierarchy (e.g.,
linkage only applies to values; parameter types only apply to
function types), the class is omitted from identifiers for
brevity. Tastes like methods.
- Strings are C strings or string/length tuples on a case-by-case
basis.
- APIs which give the caller ownership of an object are not mapped
(removeFromParent, certain constructor overloads). This keeps
keep memory management as simple as possible.
For each library with bindings:
llvm-c/<LIB>.h - Declares the bindings.
lib/<LIB>/<LIB>.cpp - Implements the bindings.
So just link with the library of your choice and use the C header
instead of the C++ one.
llvm-svn: 42077
GCC optimizes away things like ptr < NULL to false. To "fix" this,
have the CBE emit casts of pointers to intptr_t when doing relational
pointer comparisons.
llvm-svn: 41983
double from some of the many places in the optimizers
it appears, and do something reasonable with x86
long double.
Make APInt::dump() public, remove newline, use it to
dump ConstantSDNode's.
Allow APFloats in FoldingSet.
Expand X86 backend handling of long doubles (conversions
to/from int, mostly).
llvm-svn: 41967
access to bits). Use them in place of float and
double interfaces where appropriate.
First bits of x86 long double constants handling
(untested, probably does not work).
llvm-svn: 41858
Use APFloat in UpgradeParser and AsmParser.
Change all references to ConstantFP to use the
APFloat interface rather than double. Remove
the ConstantFP double interfaces.
Use APFloat functions for constant folding arithmetic
and comparisons.
(There are still way too many places APFloat is
just a wrapper around host float/double, but we're
getting there.)
llvm-svn: 41747
Implement some constant folding in SelectionDAG and
DAGCombiner using APFloat. Remove double versions
of constructor and getValue from ConstantFPSDNode.
llvm-svn: 41664
Add APFloat interfaces to ConstantFP, SelectionDAG.
Fix integer bit in double->APFloat conversion.
Convert LegalizeDAG to use APFloat interface in
ConstantFPSDNode uses.
llvm-svn: 41587
Changes related modules so VNInfo's are not copied. This decrease
copy coalescing time by 45% and overall compilation time by 10% on siod.
llvm-svn: 41579
1. Eliminate the costly live interval "swapping".
2. Change ValueNumberInfo container from SmallVector to std::vector. The former
performs slowly when the vector size is very large.
llvm-svn: 41536
gcc exception handling: if an exception unwinds through
an invoke, then execution must branch to the invoke's
unwind target. We previously tried to enforce this by
appending a cleanup action to every selector, however
this does not always work correctly due to an optimization
in the C++ unwinding runtime: if only cleanups would be
run while unwinding an exception, then the program just
terminates without actually executing the cleanups, as
invoke semantics would require. I was hoping this
wouldn't be a problem, but in fact it turns out to be the
cause of all the remaining failures in the LLVM testsuite
(these also fail with -enable-correct-eh-support, so turning
on -enable-eh didn't make things worse!). Instead we need
to append a full-blown catch-all to the end of each
selector. The correct way of doing this depends on the
personality function, i.e. it is language dependent, so
can only be done by gcc. Thus this patch which generalizes
the eh.selector intrinsic so that it can handle all possible
kinds of action table entries (before it didn't accomodate
cleanups): now 0 indicates a cleanup, and filters have to be
specified using the number of type infos plus one rather than
the number of type infos. Related gcc patches will cause
Ada to pass a cleanup (0) to force the selector to always
fire, while C++ will use a C++ catch-all (null).
llvm-svn: 41484
that don't use it don't have to pay the memory cost for the arguments. This
allows us to avoid creating Argument nodes for many prototypes and for clients
who lazily deserialize code from a bytecode file.
llvm-svn: 41166
end()) eagerly to allocating it lazily. This saves a lot of memory for JIT applications
that read a module but don't materialize most of the functions (e.g. 62K for 252.eon).
llvm-svn: 41142
The AC_CHECK_HEADER macro was used instead of AC_CHECK_HEADERS. The former does
not automatically add a #define to the configure variables while the latter
does. Consequently, the HAVE_PTHREAD_H symbol was not defined which caused the
Mutex.cpp file to compile to an empty implementation.
llvm-svn: 41137
two's complement bignum arithmetic. They could be used to
implement much of APInt, but the idea is they are enough to
implement APFloat as well, which the current APInt interface
is not suited for.
Patch by Neil Booth!
llvm-svn: 41124
(constants are still not handled). Adds ConvertActions
to control fp-to-fp conversions (these are currently
defaulted for all other targets, so no changes there).
llvm-svn: 40958
natural loop canonicalization (which does many cfg xforms) by 4.3x, for
example. This also fixes a bug in postdom dfnumber computation.
llvm-svn: 40920
kill instruction #, and source register number (iff the value# is defined by a
copy).
- Now def instruction # is set for every value#, not just for copy defined ones.
- Update some outdated code related inactive live ranges.
- Kill info not yet set. That's next patch.
llvm-svn: 40913
contents of the set were small, deallocate and shrink the set. This
avoids having us to memset as much data, significantly speeding up
some pathological cases. For example, this speeds up the verifier
from 0.3899s to 0.0763 (5.1x) on the testcase from PR1432 in a
release build.
llvm-svn: 40837
DenseMap instead of an std::map. This speeds up postdomtree
by about 25% and domtree by about 23%. It also speeds up clients,
for example, domfrontier by 11%, mem2reg by 4% and ADCE by 6%.
llvm-svn: 40826
This also changes the syntax for llvm.bswap, llvm.part.set, llvm.part.select, and llvm.ct* intrinsics. They are automatically upgraded by both the LLVM ASM reader and the bitcode reader. The test cases have been updated, with special tests added to ensure the automatic upgrading is supported.
llvm-svn: 40807
simply specify them as results and let scheduledag handle them. That
is, instead of
SDOperand Flag = DAG.getTargetNode(Opc, MVT::i32, MVT::Flag, ...)
SDOperand Result = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, Flag)
Just write:
SDOperand Result = DAG.getTargetNode(Opc, MVT::i32, MVT::i32, ...)
And let scheduledag emit the move from X86::EAX to a virtual register.
llvm-svn: 40710