Summary:
The New Pass Manager infrastructure was forgetting to keep around the optimization remark yaml file that the compiler might have been producing. This meant setting the option to '-' for stdout worked, but setting it to a filename didn't give file output (presumably it was deleted because compilation didn't explicitly keep it). This change just ensures that the file is kept if compilation succeeds.
So far I have updated one of the optimization remark output tests to add a version with the new pass manager. It is my intention for this patch to also include changes to all tests that use `-opt-remark-output=` but I wanted to get the code patch ready for review while I was making all those changes.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33951
Reviewers: anemet, chandlerc
Reviewed By: anemet, chandlerc
Subscribers: javed.absar, chandlerc, fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D36906
llvm-svn: 311271
Summary: When polly is linked into the tools because of the LLVM_POLLY_LINK_INTO_TOOLS option being set, we need to register its passes with the PassBuilder. Because polly is linked in, we can directly call its callback registration method, which registers the appropriate callbacks with the new PM's PassBuilder. This essentially follows exactly the way it worked with the legacy PM.
Reviewers: grosser, chandlerc, bollu
Reviewed By: grosser
Subscribers: pollydev, llvm-commits
Differential Revision: https://reviews.llvm.org/D36273
llvm-svn: 310043
Summary: The new PM needs to invoke add-discriminator pass when building with -fdebug-info-for-profiling.
Reviewers: chandlerc, davidxl
Reviewed By: chandlerc
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D35744
llvm-svn: 309121
Summary: This patch adds flags and tests to cover the PGOOpt handling logic in new PM.
Reviewers: chandlerc, davide
Reviewed By: chandlerc
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D35807
llvm-svn: 309076
There were two errors in the parsing of opt's command line options for
extension point pipelines. The EP callbacks are not supposed to return a
value. To check the pipeline text for correctness, I now try to parse it
into a temporary PM object, and print a message on failure. This solves
the compile time error for the lambda return type, as well as correctly
handles unparsable pipelines now.
llvm-svn: 307649
Summary:
This patch adds a callback registration API to the PassBuilder,
enabling registering out-of-tree passes with it.
Through the Callback API, callers may register callbacks with the
various stages at which passes are added into pass managers, including
parsing of a pass pipeline as well as at extension points within the
default -O pipelines.
Registering utilities like `require<>` and `invalidate<>` needs to be
handled manually by the caller, but a helper is provided.
Additionally, adding passes at pipeline extension points is exposed
through the opt tool. This patch adds a `-passes-ep-X` commandline
option for every extension point X, which opt parses into pipelines
inserted into that extension point.
Reviewers: chandlerc
Reviewed By: chandlerc
Subscribers: lksbhm, grosser, davide, mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D33464
llvm-svn: 307532
Summary: Also see D33429 for other ThinLTO + New PM related changes.
Reviewers: davide, chandlerc, tejohnson
Subscribers: mehdi_amini, Prazek, cfe-commits, inglorion, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D33525
llvm-svn: 304378
the latter to the Transforms library.
While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.
Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.
We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.
This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.
I haven't split the unittest though because testing one component
without the other seems nearly intractable.
Differential Revision: https://reviews.llvm.org/D28452
llvm-svn: 291662
Summary:
Port the ModuleSummaryAnalysisWrapperPass to the new pass manager.
Use it in the ported BitcodeWriterPass (similar to how we use the
legacy ModuleSummaryAnalysisWrapperPass in the legacy WriteBitcodePass).
Also, pass the -module-summary opt flag through to the new pass
manager pipeline and through to the bitcode writer pass, and add
a test that uses it.
Reviewers: mehdi_amini
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23439
llvm-svn: 278508
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.
In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.
llvm-svn: 263219
This creates the new-style LoopPassManager and wires it up with dummy
and print passes.
This version doesn't support modifying the loop nest at all. It will
be far easier to discuss and evaluate the approaches to that with this
in place so that the boilerplate is out of the way.
llvm-svn: 261831
analysis passes, support pre-registering analyses, and use that to
implement parsing and pre-registering a custom alias analysis pipeline.
With this its possible to configure the particular alias analysis
pipeline used by the AAManager from the commandline of opt. I've updated
the test to show this effectively in use to build a pipeline including
basic-aa as part of it.
My big question for reviewers are around the APIs that are used to
expose this functionality. Are folks happy with pass-by-lambda to do
pass registration? Are folks happy with pre-registering analyses as
a way to inject customized instances of an analysis while still using
the registry for the general case?
Other thoughts of course welcome. The next round of patches will be to
add the rest of the alias analyses into the new pass manager and wire
them up here so that they can be used from opt. This will require
extending the (somewhate limited) functionality of AAManager w.r.t.
module passes.
Differential Revision: http://reviews.llvm.org/D17259
llvm-svn: 261197
This will provide the analogous replacements for the PassManagerBuilder
and other code long term. This code is extracted from the opt tool
currently, and I plan to extend it as I build up support for using the
new pass manager in Clang and other places.
Mailing this out for review in part to let folks comment on the terrible names
here. A brief word about why I chose the names I did.
The library is called "Passes" to try and make it clear that it is a high-level
utility and where *all* of the passes come together and are registered in
a common library. I didn't want it to be *limited* to a registry though, the
registry is just one component.
The class is a "PassBuilder" but this name I'm less happy with. It doesn't
build passes in any traditional sense and isn't a Builder-style API at all. The
class is a PassRegisterer or PassAdder, but neither of those really make a lot
of sense. This class is responsible for constructing passes for registry in an
analysis manager or for population of a pass pipeline. If anyone has a better
name, I would love to hear it. The other candidate I looked at was
PassRegistrar, but that doesn't really fit either. There is no register of all
the passes in use, and so I think continuing the "registry" analog outside of
the registry of pass *names* and *types* is a mistake. The objects themselves
are just objects with the new pass manager.
Differential Revision: http://reviews.llvm.org/D8054
llvm-svn: 231556
produce it.
This adds a function to the TargetMachine that produces this analysis
via a callback for each function. This in turn faves the way to produce
a *different* TTI per-function with the correct subtarget cached.
I've also done the necessary wiring in the opt tool to thread the target
machine down and make it available to the pass registry so that we can
construct this analysis from a target machine when available.
llvm-svn: 227721
live in a class.
While this isn't really significant right now, I need to expose some
state to the pass construction expressions, and making them get
evaluated within a class context is a nice way to collect members that
they may need to access.
llvm-svn: 227715
This adds the domtree analysis to the new pass manager. The analysis
returns the same DominatorTree result entity used by the old pass
manager and essentially all of the code is shared. We just have
different boilerplate for running and printing the analysis.
I've converted one test to run in both modes just to make sure this is
exercised while both are live in the tree.
llvm-svn: 225969
and expose the necessary hooks in the API directly.
This makes it much cleaner for example to log the usage of a pass
manager from a library. It also makes it more obvious that this
functionality isn't "optional" or "asserts-only" for the pass manager.
llvm-svn: 225841
a normal interface for it in Passes.h.
This gives us essentially a single interface for running pass managers
which are provided from the bottom of the LLVM stack through interfaces
at the top of the LLVM stack that populate them with all of the
different analyses available throughout. It also means there is a single
blob of code that needs to include all of the pass headers and needs to
deal with the registry of passes and parsing names.
No functionality changed intended, should just be cleanup.
llvm-svn: 225237
units.
This was debated back and forth a bunch, but using references is now
clearly cleaner. Of all the code written using pointers thus far, in
only one place did it really make more sense to have a pointer. In most
cases, this just removes immediate dereferencing from the code. I think
it is much better to get errors on null IR units earlier, potentially
at compile time, than to delay it.
Most notably, the legacy pass manager uses references for its routines
and so as more and more code works with both, the use of pointers was
likely to become really annoying. I noticed this when I ported the
domtree analysis over and wrote the entire thing with references only to
have it fail to compile. =/ It seemed better to switch now than to
delay. We can, of course, revisit this is we learn that references are
really problematic in the API.
llvm-svn: 225145
LazyCallGraph analysis framework. Wire it up all the way through the opt
driver and add some very basic testing that we can build pass pipelines
including these components. Still a lot more to do in terms of testing
that all of this works, but the basic pieces are here.
There is a *lot* of boiler plate here. It's something I'm going to
actively look at reducing, but I don't have any immediate ideas that
don't end up making the code terribly complex in order to fold away the
boilerplate. Until I figure out something to minimize the boilerplate,
almost all of this is based on the code for the existing pass managers,
copied and heavily adjusted to suit the needs of the CGSCC pass
management layer.
The actual CG management still has a bunch of FIXMEs in it. Notably, we
don't do *any* updating of the CG as it is potentially invalidated.
I wanted to get this in place to motivate the new analysis, and add
update APIs to the analysis and the pass management layers in concert to
make sure that the *right* APIs are present.
llvm-svn: 206745
The primary motivation for this pass is to separate the call graph
analysis used by the new pass manager's CGSCC pass management from the
existing call graph analysis pass. That analysis pass is (somewhat
unfortunately) over-constrained by the existing CallGraphSCCPassManager
requirements. Those requirements make it *really* hard to cleanly layer
the needed functionality for the new pass manager on top of the existing
analysis.
However, there are also a bunch of things that the pass manager would
specifically benefit from doing differently from the existing call graph
analysis, and this new implementation tries to address several of them:
- Be lazy about scanning function definitions. The existing pass eagerly
scans the entire module to build the initial graph. This new pass is
significantly more lazy, and I plan to push this even further to
maximize locality during CGSCC walks.
- Don't use a single synthetic node to partition functions with an
indirect call from functions whose address is taken. This node creates
a huge choke-point which would preclude good parallelization across
the fanout of the SCC graph when we got to the point of looking at
such changes to LLVM.
- Use a memory dense and lightweight representation of the call graph
rather than value handles and tracking call instructions. This will
require explicit update calls instead of some updates working
transparently, but should end up being significantly more efficient.
The explicit update calls ended up being needed in many cases for the
existing call graph so we don't really lose anything.
- Doesn't explicitly model SCCs and thus doesn't provide an "identity"
for an SCC which is stable across updates. This is essential for the
new pass manager to work correctly.
- Only form the graph necessary for traversing all of the functions in
an SCC friendly order. This is a much simpler graph structure and
should be more memory dense. It does limit the ways in which it is
appropriate to use this analysis. I wish I had a better name than
"call graph". I've commented extensively this aspect.
This is still very much a WIP, in fact it is really just the initial
bits. But it is about the fourth version of the initial bits that I've
implemented with each of the others running into really frustrating
problms. This looks like it will actually work and I'd like to split the
actual complexity across commits for the sake of my reviewers. =] The
rest of the implementation along with lots of wiring will follow
somewhat more rapidly now that there is a good path forward.
Naturally, this doesn't impact any of the existing optimizer. This code
is specific to the new pass manager.
A bunch of thanks are deserved for the various folks that have helped
with the design of this, especially Nick Lewycky who actually sat with
me to go through the fundamentals of the final version here.
llvm-svn: 200903
necessary until we add analyses to the driver, but I have such an
analysis ready and wanted to split this out. This is actually exercised
by the existing tests of the new pass manager as the analysis managers
are cross-checked and validated by the function and module managers.
llvm-svn: 200901
various opt verifier commandline options.
Mostly mechanical wiring of the verifier to the new pass manager.
Exercises one of the more unusual aspects of it -- a pass can be either
a module or function pass interchangably. If this is ever problematic,
we can make things more constrained, but for things like the verifier
where there is an "obvious" applicability at both levels, it seems
convenient.
This is the next-to-last piece of basic functionality left to make the
opt commandline driving of the new pass manager minimally functional for
testing and further development. There is still a lot to be done there
(notably the factoring into .def files to kill the current boilerplate
code) but it is relatively uninteresting. The only interesting bit left
for minimal functionality is supporting the registration of analyses.
I'm planning on doing that on top of the .def file switch mostly because
the boilerplate for the analyses would be significantly worse.
llvm-svn: 199646
This moves the old pass creation functionality to its own header and
updates the callers of that routine. Then it adds a new PM supporting
bitcode writer to the header file, and wires that up in the opt tool.
A test is added that round-trips code into bitcode and back out using
the new pass manager.
llvm-svn: 199078
that through the interface rather than a simple bool. This should allow
starting to wire up real output to round-trip IR through opt with the
new pass manager.
llvm-svn: 199071
manager. I cannot emphasize enough that this is a WIP. =] I expect it
to change a great deal as things stabilize, but I think its really
important to get *some* functionality here so that the infrastructure
can be tested more traditionally from the commandline.
The current design is looking something like this:
./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))'
So rather than custom-parsed flags, there is a single flag with a string
argument that is parsed into the pass pipeline structure. This makes it
really easy to have nice structural properties that are very explicit.
There is one obvious and important shortcut. You can start off the
pipeline with a pass, and the minimal context of pass managers will be
built around the entire specified pipeline. This makes the common case
for tests super easy:
./bin/opt -passes=instcombine,sroa,gvn
But this won't introduce any of the complexity of the fully inferred old
system -- we only ever do this for the *entire* argument, and we only
look at the first pass. If the other passes don't fit in the pass
manager selected it is a hard error.
The other interesting aspect here is that I'm not relying on any
registration facilities. Such facilities may be unavoidable for
supporting plugins, but I have alternative ideas for plugins that I'd
like to try first. My plan is essentially to build everything without
registration until we hit an absolute requirement.
Instead of registration of pass names, there will be a library dedicated
to parsing pass names and the pass pipeline strings described above.
Currently, this is directly embedded into opt for simplicity as it is
very early, but I plan to eventually pull this into a library that opt,
bugpoint, and even Clang can depend on. It should end up as a good home
for things like the existing PassManagerBuilder as well.
There are a bunch of FIXMEs in the code for the parts of this that are
just stubbed out to make the patch more incremental. A quick list of
what's coming up directly after this:
- Support for function passes and building the structured nesting.
- Support for printing the pass structure, and FileCheck tests of all of
this code.
- The .def-file based pass name parsing.
- IR priting passes and the corresponding tests.
Some obvious things that I'm not going to do right now, but am
definitely planning on as the pass manager work gets a bit further:
- Pull the parsing into library, including the builders.
- Thread the rest of the target stuff into the new pass manager.
- Wire support for the new pass manager up to llc.
- Plugin support.
Some things that I'd like to have, but are significantly lower on my
priority list. I'll get to these eventually, but they may also be places
where others want to contribute:
- Adding nice error reporting for broken pass pipeline descriptions.
- Typo-correction for pass names.
llvm-svn: 198998