When sampleFDO is enabled, people may expect they can use
-fno-profile-sample-use to opt-out using sample profile for a certain file.
That could be either for debugging purpose or for performance tuning purpose.
However, when thinlto is enabled, if a function in file A compiled with
-fno-profile-sample-use is imported to another file B compiled with
-fprofile-sample-use, the inlined copy of the function in file B may still
get its profile annotated.
The inconsistency may even introduce profile unused warning because if the
target is not compiled with explicit debug information flag, the function
in file A won't have its debug information enabled (debug information will
be enabled implicitly only when -fprofile-sample-use is used). After it is
imported into file B which is compiled with -fprofile-sample-use, profile
annotation for the outline copy of the function will fail because the
function has no debug information, and that will trigger profile unused
warning.
We add a new attribute use-sample-profile to control whether a function
will use its sample profile no matter for its outline or inline copies.
That will make the behavior of -fno-profile-sample-use consistent.
Differential Revision: https://reviews.llvm.org/D79959
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
The existing coverage tracker counts the number of records that were used
from the input profile. An alternative view of coverage is to check how
many available samples were applied.
This way, if the profile contains several records with few samples, it
doesn't really matter much that they were not applied. The more
interesting records to apply are the ones that contribute many samples.
llvm-svn: 253912
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
This adds the flag -mllvm -sample-profile-check-coverage=N to the
SampleProfile pass. N is the percent of input sample records that the
user expects to apply. If the pass does not use N% (or more) of the
sample records in the input, it emits a warning.
This is useful to detect some forms of stale profiles. If the code has
drifted enough from the original profile, there will be records that do
not match the IR anymore.
This will not detect cases where a sample profile record for line L is
referring to some other instructions that also used to be at line L.
llvm-svn: 251568