Per discussion on discord and various feature requests across bindings (Haskell and Rust bindings authors have asked me directly), we should be building a link-ready MLIR-C dylib which exports the C API and can be used without linking to anything else.
This patch:
* Adds a new MLIR-C aggregate shared library (libMLIR-C.so), which is similar in name and function to libLLVM-C.so.
* It is guarded by the new CMake option MLIR_BUILD_MLIR_C_DYLIB, which has a similar purpose/name to the LLVM_BUILD_LLVM_C_DYLIB option.
* On all platforms, this will work with both static, BUILD_SHARED_LIBS, and libMLIR builds, if supported:
* In static builds: libMLIR-C.so will export the CAPI symbols and statically link all dependencies into itself.
* In BUILD_SHARED_LIBS: libMLIR-C.so will export the CAPI symbols and have dynamic dependencies on implementation shared libraries.
* In libMLIR.so mode: same as static. libMLIR.so was not finished for actual linking use within the project. An eventual relayering so that libMLIR-C.so depends on libMLIR.so is possible but requires first re-engineering the latter to use the aggregate facility.
* On Linux, exported symbols are filtered to only the CAPI. On others (MacOS, Windows), all symbols are exported. A CMake status is printed unless if global visibility is hidden indicating that this has not yet been implemented. The library should still work, but it will be larger and more likely to conflict until fixed. Someone should look at lifting the corresponding support from libLLVM-C.so and adapting. Or, for special uses, just build with `-DCMAKE_CXX_VISIBILITY_PRESET=hidden -DCMAKE_C_VISIBILITY_PRESET=hidden`.
* Includes fixes to execution engine symbol export macros to enable default visibility. Without this, the advice to use hidden visibility would have resulted in test failures and unusable execution engine support libraries.
Differential Revision: https://reviews.llvm.org/D113731
Currently, passes are registered on a per-dialect basis, which
provides the smallest footprint obviously. But for prototyping
and experimentation, a convenience "all passes" module is provided,
which registers all known MLIR passes in one run.
Usage in Python:
import mlir.all_passes_registration
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D103130
There is no need for the interface implementations to be exposed, opaque
registration functions are sufficient for all users, similarly to passes.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D97852
This adds minimalistic bindings for the execution engine, allowing to
invoke the JIT from the C API. This is still quite early and
experimental and shouldn't be considered stable in any way.
Differential Revision: https://reviews.llvm.org/D96651
MLIRContext allows its users to access directly to the DialectRegistry it
contains. While sometimes useful for registering additional dialects on an
already existing context, this breaks the encapsulation by essentially giving
raw accesses to a part of the context's internal state. Remove this mutable
access and instead provide a method to append a given DialectRegistry to the
one already contained in the context. Also provide a shortcut mechanism to
construct a context from an already existing registry, which seems to be a
common use case in the wild. Keep read-only access to the registry contained in
the context in case it needs to be copied or used for constructing another
context.
With this change, DialectRegistry is no longer concerned with loading the
dialects and deciding whether to invoke delayed interface registration. Loading
is concentrated in the MLIRContext, and the functionality of the registry
better reflects its name.
Depends On D96137
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96331
We were discussing on discord regarding the need for extension-based systems like Python to dynamically link against MLIR (or else you can only have one extension that depends on it). Currently, when I set that up, I piggy-backed off of the flag that enables build libLLVM.so and libMLIR.so and depended on libMLIR.so from the python extension if shared library building was enabled. However, this is less than ideal.
In the current setup, libMLIR.so exports both all symbols from the C++ API and the C-API. The former is a kitchen sink and the latter is curated. We should be splitting them and for things that are properly factored to depend on the C-API, they should have the option to *only* depend on the C-API, and we should build that shared library no matter what. Its presence isn't just an optimization: it is a key part of the system.
To do this right, I needed to:
* Introduce visibility macros into mlir-c/Support.h. These should work on both *nix and windows as-is.
* Create a new libMLIRPublicAPI.so with just the mlir-c object files.
* Compile the C-API with -fvisibility=hidden.
* Conditionally depend on the libMLIR.so from libMLIRPublicAPI.so if building libMLIR.so (otherwise, also links against the static libs and will produce a mondo libMLIRPublicAPI.so).
* Disable re-exporting of static library symbols that come in as transitive deps.
This gives us a dynamic linked C-API layer that is minimal and should work as-is on all platforms. Since we don't support libMLIR.so building on Windows yet (and it is not very DLL friendly), this will fall back to a mondo build of libMLIRPublicAPI.so, which has its uses (it is also the most size conscious way to go if you happen to know exactly what you need).
Sizes (release/stripped, Ubuntu 20.04):
Shared library build:
libMLIRPublicAPI.so: 121Kb
_mlir.cpython-38-x86_64-linux-gnu.so: 1.4Mb
mlir-capi-ir-test: 135Kb
libMLIR.so: 21Mb
Static build:
libMLIRPublicAPI.so: 5.5Mb (since this is a "static" build, this includes the MLIR implementation as non-exported code).
_mlir.cpython-38-x86_64-linux-gnu.so: 1.4Mb
mlir-capi-ir-test: 44Kb
Things like npcomp and circt which bring their own dialects/transforms/etc would still need the shared library build and code that links against libMLIR.so (since it is all C++ interop stuff), but hopefully things that only depend on the public C-API can just have the one narrow dep.
I spot checked everything with nm, and it looks good in terms of what is exporting/importing from each layer.
I'm not in a hurry to land this, but if it is controversial, I'll probably split off the Support.h and API visibility macro changes, since we should set that pattern regardless.
Reviewed By: mehdi_amini, benvanik
Differential Revision: https://reviews.llvm.org/D90824
* I believe this was done early on due to it being experimental/etc.
* Needed for dynamic linking in npcomp.
Differential Revision: https://reviews.llvm.org/D89081
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
Introduce an initial version of C API for MLIR core IR components: Value, Type,
Attribute, Operation, Region, Block, Location. These APIs allow for both
inspection and creation of the IR in the generic form and intended for wrapping
in high-level library- and language-specific constructs. At this point, there
is no stability guarantee provided for the API.
Reviewed By: stellaraccident, lattner
Differential Revision: https://reviews.llvm.org/D83310