they are probably trivial. This means that we
don't confuse Clang about whether a class is
trivially copy constructible. It can figure
that out itself as long as we don't explicitly
feed it the constructors.
If the class is trivially copy-constructible,
this can change the ABI that Clang uses to call
functions that return that class (e.g., by making
the object be returned in a register), so this
is quite important for correctness.
<rdar://problem/13457741>
llvm-svn: 178411
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
uninitialized memory, to getTrivialTypeSourceInfo,
which initializes its memory, when creating trivial
TypeSourceInfos.
<rdar://problem/13332253>
llvm-svn: 176899
Make dynamic type detection faster by using the AST metadata to help out and allow us not to complete types when we don't need to.
After running "purge" on a MacOSX system, the Xcode variables view now populates more than 3x faster with this fix.
llvm-svn: 176676
LLDB wasn't printing the names for negative enums. Fixed the signed extraction of enumerators and how they were registered with clang's type system.
llvm-svn: 176533
if it encountered bad debug information. This
debug information had an Objective-C method whose
selector disagreed with the true number of arguments
to that method.
<rdar://problem/12992864>
llvm-svn: 174557
support reporting "this" as a templated class. The
expression parser wraps expressions in C++ methods
as methods with the signature
$__lldb_class::$__lldb_expr(...)
and previously responded to clang's queries about
$__lldb_class with the type of *this. This didn't
work if *this was a ClassTemplateSpecializationDecl
because ClassTemplateSpecializationDecls can't be
the result of simple name queries.
Instead what we do now is respond that $__lldb_class
is a typedef and that the target of the typedef is
the (potentially templated) type of *this. That is
much more robust.
Thanks to John McCall for key insights.
<rdar://problem/10987183>
llvm-svn: 174153
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Enabling support for the wchar_t type.
Without the proper language option setup, clang's ASTContexts will be configured to have wchar_t == int
This patch enables the correct options to make sure that we report wchar_t as itself
Added a test case to make sure we do not regress
Adding files missing from the previous commit
llvm-svn: 172039
Added SBTarget::EvaluateExpression() so expressions can be evaluated without needing a process.
Also fixed many functions that deal with clang AST types to be able to properly handle the clang::Type::Elaborated types ("struct foo", "class bar").
llvm-svn: 171476
The results from Clang name lookups changed to
be ArrayRefs, so I had to change the way we
check for the presence of a result and the way
we iterate across results.
llvm-svn: 170927
Fixed zero sized arrays to work correctly. This will only happen once we get a clang that emits correct debug info for zero sized arrays. For now I have marked the TestStructTypes.py as an expected failure.
llvm-svn: 169465
Unnamed bitfields cause struct layout problems
Synthesize unnamed bitfields when required. Most compilers don't mention unnamed bitfields in the DWARF, so we need to create them to keep clang happy with the types we create from the DWARF. We currently can't do this for ObjC since the DW_AT_bit_offset value for any direct ivars of ObjC classes as the values for these attributes are bogus. A bug has been filed on Clang to fix this, and another bug has been filed on LLDB to make sure we fix the DWARF parser once the clang fix is in by looking the the DW_AT_producer in the compile unit attributes and finding the compiler version and only enabling it for newer versions of clang.
llvm-svn: 167424
so it could hold this information, and then used it to look up unfound names in the object pointer
if it exists. This gets "frame var" to work for unqualified references to ivars captured in blocks.
But the expression parser is ignoring this information still.
llvm-svn: 166860
top-of-tree. Removed all local patches and llvm.zip.
The intent is that fron now on top-of-tree will
always build against LLVM/Clang top-of-tree, and
that problems building will be resolved as they
occur. Stable release branches of LLDB can be
constructed as needed and linked to specific release
branches of LLVM/Clang.
llvm-svn: 164563
Added a fix for incorrect dynamic typing. Before when asking if a C++ class could be dynamic, we would answer yes for incomplete C++ classes. This turned out to have issues where if a class was not virtual, yet had its first ivar be an instance of a virtual class, we would incorrectly say that a class was virtual and we would downcast it to be a pointer to the first ivar. We now ask the class to complete itself prior to answering the question. We need to test the effects on memory of this change prior to submission. It is the safest and best fix, but it does have a potential downside of higher memory consumption.
llvm-svn: 163014
Added new API to lldb::SBTypeMember for bitfields:
bool SBTypeMember::IsBitfield();
uint32_t SBTypeMember::GetBitfieldSizeInBits();
Also added new properties for easy access. Now SBTypeMember objects in python have a "fields" property for all type fields, "bases" for all direct bases, "vbases" for all virtual base classes and "members" for a combo of all three organized by bit offset. They all return a python list() of SBTypeMember objects. Usage:
(lldb) script
>>> t = lldb.target.FindFirstType("my_type")
>>> for field in t.fields:
... print field
>>> for vbase in t.vbases:
... print vbase
>>> for base in t.bases:
... print base
>>> for member in t.members:
... print member
Also added new "is_bitfield" property to the SBTypeMember objects that will return the result of SBTypeMember::IsBitfield(), and "bitfield_bit_size" which will return the result of SBTypeMember::GetBitfieldSizeInBits();
I also fixed "SBTypeMember::GetOffsetInBytes()" to return the correct byte offset.
llvm-svn: 161091
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
the debug information individual Decls came from.
We've had a metadata infrastructure for a while,
which was intended to solve a problem we've since
dealt with in a different way. (It was meant to
keep track of which definition of an Objective-C
class was the "true" definition, but we now find
it by searching the symbols for the class symbol.)
The metadata is attached to the ExternalASTSource,
which means it has a one-to-one correspondence with
AST contexts.
I've repurposed the metadata infrastructure to
hold the object file and DIE offset for the DWARF
information corresponding to a Decl. There are
methods in ClangASTContext that get and set this
metadata, and the ClangASTImporter is capable of
tracking down the metadata for Decls that have been
copied out of the debug information into the
parser's AST context without using any additional
memory.
To see the metadata, you just have to enable the
expression log:
-
(lldb) log enable lldb expr
-
and watch the import messages. The high 32 bits
of the metadata indicate the index of the object
file in its containing DWARFDebugMap; I have also
added a log which you can use to track that mapping:
-
(lldb) log enable dwarf map
-
This adds 64 bits per Decl, which in my testing
hasn't turned out to be very much (debugging Clang
produces around 6500 Decls in my tests). To track
how much data is being consumed, I've also added a
global variable g_TotalSizeOfMetadata which tracks
the total number of Decls that have metadata in all
active AST contexts.
Right now this metadata is enormously useful for
tracking down bugs in the debug info parser. In the
future I also want to use this information to provide
more intelligent error messages instead of printing
empty source lines wherever Clang refers to the
location where something is defined.
llvm-svn: 154634
correctly if the setter/getter were not present
in the debug information. The fixes are as follows:
- We not only look for the method by its full name,
but also look for automatically-generated methods
when searching for a selector in an Objective-C
interface. This is necessary to find accessors.
- Extract the getter and setter name from the
DW_TAG_APPLE_Property declaration in the DWARF
if they are present; generate them if not.
llvm-svn: 154067