Allows LLVM to optimize sequences like the following:
%add = add nuw i32 %x, 1
%cmp = icmp ugt i32 %add, %y
Into:
%cmp = icmp uge i32 %x, %y
Previously, only signed comparisons were being handled.
Decrements could also be handled, but 'sub nuw %x, 1' is currently canonicalized to
'add %x, -1' in InstCombineAddSub, losing the nuw flag. Removing that canonicalization
seems like it might have far-reaching ramifications so I kept this simple for now.
Patch by Matti Niemenmaa!
Differential Revision: https://reviews.llvm.org/D24700
llvm-svn: 291975
Summary:
This is a testcase where phi node cycling happens, and because we do
not order the leaders by domination or anything similar, the leader
keeps changing.
Using std::set for the members is too expensive, and we actually don't
need them sorted all the time, only at leader changes.
We could keep both a set and a vector, and keep them mostly sorted and
resort as necessary, or use a set and a fibheap, but all of this seems
premature.
After running some statistics, we are able to avoid the vast majority
of sorting by keeping a "next leader" field. Most congruence classes only have
leader changes once or twice during GVN.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28594
llvm-svn: 291968
Other than on COFF with incremental linking, global metadata should
not need any extra alignment.
Differential Revision: https://reviews.llvm.org/D28628
llvm-svn: 291859
Summary:
We can sometimes end up with multiple copies of a local function that
have the same GUID in the index. This happens when there are local
functions with the same name that are in different source files with the
same name (but in different directories), and they were compiled in
their own directory so had the same path at compile time.
In this case make sure we import the copy in the caller's module. While
it isn't a correctness problem (the renamed reference which is based on the
module IR hash will be unique since the module must have had an
externally visible function that was imported), importing the wrong copy
will result in lost performance opportunity since it won't be referenced
and inlined.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28440
llvm-svn: 291841
It was always zero. When we move a store from `initial` to its
own congruency class, we end up with a negative store count, which
is obviously wrong.
Also, while here, change StoreCount to be signed so that the assertions
actually fire.
Ack'ed by Daniel Berlin.
llvm-svn: 291725
When using profiling and ASan together (-fprofile-instr-generate -fcoverage-mapping -fsanitize=address), at least on Darwin, the section of globals that ASan emits (__asan_globals) is misaligned and starts at an odd offset. This really doesn't have anything to do with profiling, but it triggers the issue because profiling emits a string section, which can have arbitrary size. This patch changes the alignment to sizeof(GlobalStruct).
Differential Revision: https://reviews.llvm.org/D28573
llvm-svn: 291715
This means that we can use a shorter instruction sequence in the case where
the size is a power of two and on the boundary between two representations.
Differential Revision: https://reviews.llvm.org/D28421
llvm-svn: 291706
classes, and updating checking to allow for equivalence through
reachability.
(Sadly, the checking here is not perfect, and can't be made perfect,
so we'll have to disable it after we are satisfied with correctness.
Right now it is just "very unlikely" to happen.)
llvm-svn: 291698
The removed assert seems bogus - it's perfectly legal for the roots of the
vectorized subtrees to be equal even if the original scalar values aren't,
if the original scalars happen to be equivalent.
This fixes PR31599.
Differential Revision: https://reviews.llvm.org/D28539
llvm-svn: 291692
Summary:
Revert LowerTypeTests: Split the pass in two: a resolution phase and a lowering phase.
This change separates how type identifiers are resolved from how intrinsic
calls are lowered. All information required to lower an intrinsic call
is stored in a new TypeIdLowering data structure. The idea is that this
data structure can either be initialized using the module itself during
regular LTO, or using the module summary in ThinLTO backends.
Original URL: https://reviews.llvm.org/D28341
Reviewers: pcc
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D28532
llvm-svn: 291684
Here's my second try at making @llvm.assume processing more efficient. My
previous attempt, which leveraged operand bundles, r289755, didn't end up
working: it did make assume processing more efficient but eliminating the
assumption cache made ephemeral value computation too expensive. This is a
more-targeted change. We'll keep the assumption cache, but extend it to keep a
map of affected values (i.e. values about which an assumption might provide
some information) to the corresponding assumption intrinsics. This allows
ValueTracking and LVI to find assumptions relevant to the value being queried
without scanning all assumptions in the function. The fact that ValueTracking
started doing O(number of assumptions in the function) work, for every
known-bits query, has become prohibitively expensive in some cases.
As discussed during the review, this is a pragmatic fix that, longer term, will
likely be replaced by a more-principled solution (perhaps based on an extended
SSA form).
Differential Revision: https://reviews.llvm.org/D28459
llvm-svn: 291671
the latter to the Transforms library.
While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.
Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.
We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.
This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.
I haven't split the unittest though because testing one component
without the other seems nearly intractable.
Differential Revision: https://reviews.llvm.org/D28452
llvm-svn: 291662
updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.
special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq.
In case if the real operands bitwidth <= 16.
Differential Revision: https://reviews.llvm.org/D28104
llvm-svn: 291657
arguments much like the CGSCC pass manager.
This is a major redesign following the pattern establish for the CGSCC layer to
support updates to the set of loops during the traversal of the loop nest and
to support invalidation of analyses.
An additional significant burden in the loop PM is that so many passes require
access to a large number of function analyses. Manually ensuring these are
cached, available, and preserved has been a long-standing burden in LLVM even
with the help of the automatic scheduling in the old pass manager. And it made
the new pass manager extremely unweildy. With this design, we can package the
common analyses up while in a function pass and make them immediately available
to all the loop passes. While in some cases this is unnecessary, I think the
simplicity afforded is worth it.
This does not (yet) address loop simplified form or LCSSA form, but those are
the next things on my radar and I have a clear plan for them.
While the patch is very large, most of it is either mechanically updating loop
passes to the new API or the new testing for the loop PM. The code for it is
reasonably compact.
I have not yet updated all of the loop passes to correctly leverage the update
mechanisms demonstrated in the unittests. I'll do that in follow-up patches
along with improved FileCheck tests for those passes that ensure things work in
more realistic scenarios. In many cases, there isn't much we can do with these
until the loop simplified form and LCSSA form are in place.
Differential Revision: https://reviews.llvm.org/D28292
llvm-svn: 291651
These are interesting again because the user may not be aware that this
is a common reason preventing LICM.
A const is removed from an instruction pointer declaration in order to
pass it to ORE.
Differential Revision: https://reviews.llvm.org/D27940
llvm-svn: 291649
This patch reverts r291588: [PGO] Turn off comdat renaming in IR PGO by default,
as we are seeing some hash mismatches in our internal tests.
llvm-svn: 291621
Some of the callers are artificially limiting this transform to integer types;
this should make it easier to incrementally remove that restriction.
llvm-svn: 291620
Summary:
This fixes Transforms/LoopUnroll/runtime-loop3.ll which failed with
EXTENSIVE_DEBUG, because the cloned basic blocks were not added to the
correct sub-loops in LoopUnrollRuntime.cpp.
Reviewers: dexonsmith, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28482
llvm-svn: 291619
Move the code to update LoopInfo for cloned basic blocks to
addClonedBlockToLoopInfo, as suggested in
https://reviews.llvm.org/D28482.
llvm-svn: 291614
Bail out instead of asserting when we encounter this situation,
which can actually happen.
The reason the test uses the new PM is that the "bad" phi, incidentally, gets
cleaned up by LoopSimplify. But LICM can create this kind of phi and preserve
loop simplify form, so the cleanup has no chance to run.
This fixes PR31190.
We may want to solve this in a less conservative manner, since this phi is
actually uniform within the inner loop (or we may want LICM to output a cleaner
promotion to begin with).
Differential Revision: https://reviews.llvm.org/D28490
llvm-svn: 291589
Summary:
In IR PGO we append the function hash to comdat functions to avoid the
potential hash mismatch. This turns out not legal in some cases: if the comdat
function is address-taken and used in comparison. Renaming changes the semantic.
This patch turns off comdat renaming by default.
To alleviate the hash mismatch issue, we now rename the profile variable
for comdat functions. Profile allows co-existing multiple versions of profiles
with different hash value. The inlined copy will always has the correct profile
counter. The out-of-line copy might not have the correct count. But we will
not have the bogus mismatch warning.
Reviewers: davidxl
Subscribers: llvm-commits, xur
Differential Revision: https://reviews.llvm.org/D28416
llvm-svn: 291588
In some cases StructurizeCfg updates root node, but dominator info
remains unchanges, it causes crash when expensive checks are enabled.
To cope with this problem a new method was added to DominatorTreeBase
that allows adding new root nodes, it is called in StructurizeCfg to
put dominator tree in sync.
This change fixes PR27488.
Differential Revision: https://reviews.llvm.org/D28114
llvm-svn: 291530
This patch delays the fix-up step for external induction variable users until
after the dominator tree has been properly updated. This should fix PR30742.
The SCEVExpander in InductionDescriptor::transform can generate code in the
wrong location if the dominator tree is not up-to-date. We should work towards
keeping the dominator tree up-to-date throughout the transformation.
Reference: https://llvm.org/bugs/show_bug.cgi?id=30742
Differential Revision: https://reviews.llvm.org/D28168
llvm-svn: 291462
fabs(x * x) is not generally safe to assume x is positive if x is a NaN.
This is also less general than it could be, so this will be replaced
with a transformation on the intrinsic.
llvm-svn: 291359
Also move command line handling out of the pass constructor and into
a separate function.
Differential Revision: https://reviews.llvm.org/D28422
llvm-svn: 291323
Summary: LLVM's non-standard notion of phi nodes means we can't both try to substitute for undef in phi nodes *and* use phi nodes as leaders all the time. This changes NewGVN to use the same semantics as SimplifyPHINode to decide which phi nodes are equivalent.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28312
llvm-svn: 291308
Summary:
r285871 introduced an assert that was overly aggressive in the case
of a same-named local in different same-named files (in different
directories), where the source name and therefore the GUID ended up
the same because the files were compiled in their own directory without
any leading path. Change the handling in the promotion logic to get
the summary for the version in that module.
This also exposed an issue where we are not always importing the
right copy, which is a performance not correctness issue (because
the renaming is based on the module hash which must be different,
see the bug report for details). I will fix that as a follow-on.
Fixes PR31561.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28411
llvm-svn: 291304
This flag is used to track global registration in Mach-O and it doesn't need to be exported and visible.
Differential Revision: https://reviews.llvm.org/D28250
llvm-svn: 291289
This is fixing a bug where Loop Vectorization is widening a load but
with a lower alignment. Hoisting the load without propagating the alignment
will allow inst-combine to later deduce a higher alignment that what the pointer
actually is.
Differential Revision: https://reviews.llvm.org/D28408
llvm-svn: 291281
order to avoid jumpy line tables. Calls are left alone because they may be inlined.
Differential Revision: https://reviews.llvm.org/D28390
llvm-svn: 291258
This change separates how type identifiers are resolved from how intrinsic
calls are lowered. All information required to lower an intrinsic call
is stored in a new TypeIdLowering data structure. The idea is that this
data structure can either be initialized using the module itself during
regular LTO, or using the module summary in ThinLTO backends.
Differential Revision: https://reviews.llvm.org/D28341
llvm-svn: 291205
Summary:
Using the linker-supplied list of "preserved" symbols, we can compute
the list of "dead" symbols, i.e. the one that are not reachable from
a "preserved" symbol transitively on the reference graph.
Right now we are using this information to mark these functions as
non-eligible for import.
The impact is two folds:
- Reduction of compile time: we don't import these functions anywhere
or import the function these symbols are calling.
- The limited number of import/export leads to better internalization.
Patch originally by Mehdi Amini.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23488
llvm-svn: 291177
Promotion is always legal when a store within the loop is guaranteed to execute.
However, this is not a necessary condition - for promotion to be memory model
semantics-preserving, it is enough to have a store that dominates every exit
block. This is because if the store dominates every exit block, the fact the
exit block was executed implies the original store was executed as well.
Differential Revision: https://reviews.llvm.org/D28147
llvm-svn: 291171
Summary:
Preheader instruction's operands will always be invariant w.r.t. the loop which its the preheader
for.
Memory aliases are handled in canSinkOrHoistInst.
Reviewers: danielcdh, davidxl
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D28270
llvm-svn: 291132
Summary:
This adds a new summary flag NotEligibleToImport that subsumes
several existing flags (NoRename, HasInlineAsmMaybeReferencingInternal
and IsNotViableToInline). It also subsumes the checking of references
on the summary that was being done during the thin link by
eligibleForImport() for each candidate. It is much more efficient to
do that checking once during the per-module summary build and record
it in the summary.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28169
llvm-svn: 291108
This code seems to be target dependent which may not be the same for all targets.
Passed the decision whether the given stride is complex or not to the target by sending stride information via SCEV to getAddressComputationCost instead of 'IsComplex'.
Specifically at X86 targets we dont see any significant address computation cost in case of the strided access in general.
Differential Revision: https://reviews.llvm.org/D27518
llvm-svn: 291106
Set up basic YAML I/O support for module summaries, plumb the summary into
the pass and add a few command line flags to test YAML I/O support. Bitcode
support to come separately, as will the code in LowerTypeTests that actually
uses the summary. Also add a couple of tests that pass by virtue of the pass
doing nothing with the summary (which happens to be the correct thing to do
for those tests).
Differential Revision: https://reviews.llvm.org/D28041
llvm-svn: 291069
performing partial redundancy elimination (PRE). Not doing so can cause jumpy line
tables and confusing (though correct) source attributions.
Differential Revision: https://reviews.llvm.org/D27857
llvm-svn: 291037
Summary:
This is a relatively simple scheme: we use the index emitted in the
bitcode to avoid loading all the global metadata. Instead we load
the index with their position in the bitcode so that we can load each
of them individually. Materializing the global metadata block in this
condition only triggers loading the named metadata, and the ones
referenced from there (transitively). When materializing a function,
metadata from the global block are loaded lazily as they are
referenced.
Two main current limitations are:
1) Global values other than functions are not materialized on demand,
so we need to eagerly load METADATA_GLOBAL_DECL_ATTACHMENT records
(and their transitive dependencies).
2) When we load a single metadata, we don't recurse on the operands,
instead we use a placeholder or a temporary metadata. Unfortunately
tepmorary nodes are very expensive. This is why we don't have it
always enabled and only for importing.
These two limitations can be lifted in a subsequent improvement if
needed.
With this change, the total link time of opt with ThinLTO and Debug
Info enabled is going down from 282s to 224s (~20%).
Reviewers: pcc, tejohnson, dexonsmith
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28113
llvm-svn: 291027
This reapplies r289828 (reverted in r289833 as it broke the address sanitizer). The
debugloc is now only set when the instruction is not a call, as this causes the
verifier to assert (the inliner requires an inlinable callsite to have a debug loc
if the caller and callee have debug info).
Original commit message:
Simplify CFG will try to sink the last instruction in a series of basic blocks,
creating a "common" instruction in the successor block (sinkLastInstruction).
When it does this, the debug location of the single instruction should be the
merged debug locations of the commoned instructions.
Original review: https://reviews.llvm.org/D27590
llvm-svn: 290973
We can perform the following:
(add (zext (add nuw X, C1)), C2) -> (zext (add nuw X, C1+C2))
This is only possible if C2 is negative and C2 is greater than or equal to negative C1.
llvm-svn: 290927
I wrote this patch before seeing the comment in:
https://reviews.llvm.org/D27114
...that suggests we should actually be canonicalizing the other way.
So just in case we decide this is the right way, we might as well
have a cleaner implementation.
llvm-svn: 290912
Summary:
Regardless how the loop body weight is distributed, we should preserve
total loop body weight. i.e. we should have same weight reaching the body of the loop
or its duplicates in peeled and unpeeled case.
Reviewers: mkuper, davidxl, anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28179
llvm-svn: 290833
Apparently my suggestion of using ternary doesn't really work
as clang complains about incompatible types on LHS and RHS. Some
GCC versions happen to accept the code but clang behaviour is
correct here.
llvm-svn: 290822
Summary:
This avoids the very fragile code for null expressions. We could also use a denseset that tracks which things have null expressions instead, but that seems pretty fragile and premature optimization.
This resolves a number of infinite loop cases, test reductions coming.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28193
llvm-svn: 290816
Summary: Previously, we tried to fix up the equivalences during symbolic evaluation. This does not work. Now, we change the equivalences during congruence finding, where it belongs. We also initialize the equivalence table to give a maximal answer.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28192
llvm-svn: 290815
CVP doesn't care about the order of blocks visited, but by using a pre-order traversal over the graph we can a) not visit unreachable blocks and b) optimize as we go so that analysis of later blocks produce slightly more precise results.
I noticed this via inspection and don't have a concrete example which points to the issue.
llvm-svn: 290760
This is similar to the allocfn case - if an alloca is not captured, then it's
necessarily thread-local.
Differential Revision: https://reviews.llvm.org/D28170
llvm-svn: 290738
Summary:
The current loop complete unroll algorithm checks if unrolling complete will reduce the runtime by a certain percentage. If yes, it will apply a fixed boosting factor to the threshold (by discounting cost). The problem for this approach is that the threshold abruptly. This patch makes the boosting factor a function of runtime reduction percentage, capped by a fixed threshold. In this way, the threshold changes continuously.
The patch also simplified the code by reducing one parameter in UP.
The patch only affects code-gen of two speccpu2006 benchmark:
445.gobmk binary size decreases 0.08%, no performance change.
464.h264ref binary size increases 0.24%, no performance change.
Reviewers: mzolotukhin, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26989
llvm-svn: 290737
"Changed" doesn't actually change within the loop, so there's
no reason to keep track of it - we always return false during
analysis and true after the transformation is made.
llvm-svn: 290735
We correctly canonicalized (add (sext x), (sext y)) to (sext (add x, y))
where possible. However, we didn't perform the same canonicalization
for zexts or for muls.
llvm-svn: 290733
This moves the exit block and insertion point computation to be eager,
instead of after seeing the first scalar we can promote.
The cost is relatively small (the computation happens anyway, see discussion
on D28147), and the code is easier to follow, and can bail out earlier
if there's a catchswitch present.
llvm-svn: 290729
We would check whether we have a prehader *or* dedicated exit blocks,
and go into the promotion loop. Then, for each alias set we'd check
if we have a preheader *and* dedicated exit blocks, and bail if not.
Instead, bail immediately if we don't have both.
llvm-svn: 290728
We want to recompute LCSSA only when we actually promoted a value.
This means we only need to look at changes made by promotion when
deciding whether to recompute it or not, not at regular sinking/hoisting.
(This was what the code was documented as doing, just not what it did)
Hopefully NFC.
llvm-svn: 290726
We bypassed the intrinsic and returned the passthru operand, but we should also add the intrinsic to the worklist since its now dead. This can allow DCE to find it sooner and remove it. Similar was done for InsertElement when the inserted element isn't demanded.
llvm-svn: 290704
Summary:
The optimal iteration order for this problem is RPO order. We want to
process as many preds of a backedge as we can before we process the
backedge.
At the same time, as we add predicate handling, we want to be able to
touch instructions that are dominated by a given block by
ranges (because a change in value numbering a predicate possibly
affects all users we dominate that are using that predicate).
If we don't do it this way, we can't do value inference over
backedges (the paper covers this in depth).
The newgvn branch currently overshoots the last part, and guarantees
that it will touch *at least* the right set of instructions, but it
does touch more. This is because the bitvector instruction ranges are
currently generated in RPO order (so we take the max and the min of
the ranges of dominated blocks, which means there are some in the
middle we didn't have to touch that we did).
We can do better by sorting the dominator tree, and then just using
dominator tree order.
As a preliminary, the dominator tree has some RPO guarantees, but not
enough. It guarantees that for a given node, your idom must come
before you in the RPO ordering. It guarantees no relative RPO ordering
for siblings. We add siblings in whatever order they appear in the module.
So that is what we fix.
We sort the children array of the domtree into RPO order, and then use
the dominator tree for ordering, instead of RPO, since the dominator
tree is now a valid RPO ordering.
Note: This would help any other pass that iterates a forward problem
in dominator tree order. Most of them are single pass. It will still
maximize whatever result they compute. We could also build the
dominator tree in this order, but our incremental updates would still
put it out of sort order, and recomputing the sort order is almost as
hard as general incremental updates of the domtree.
Also note that the sorting does not affect any tests, etc. Nothing
depends on domtree order, including the verifier, the equals
functions for domtree nodes, etc.
How much could this matter, you ask?
Here are the current numbers.
This is generated by running NewGVN over all files in LLVM.
Note that once we propagate equalities, the differences go up by an
order of magnitude or two (IE instead of 29, the max ends up in the
thousands, since the worst case we add a factor of N, where N is the
number of branch predicates). So while it doesn't look that stark for
the default ordering, it gets *much much* worse. There are also
programs in the wild where the difference is already pretty stark
(2 iterations vs hundreds).
RPO ordering:
759040 Number of iterations is 1
112908 Number of iterations is 2
Default dominator tree ordering:
755081 Number of iterations is 1
116234 Number of iterations is 2
603 Number of iterations is 3
27 Number of iterations is 4
2 Number of iterations is 5
1 Number of iterations is 7
Dominator tree sorted:
759040 Number of iterations is 1
112908 Number of iterations is 2
<yay!>
Really bad ordering (sort domtree siblings in postorder. not quite the
worst possible, but yeah):
754008 Number of iterations is 1
21 Number of iterations is 10
8 Number of iterations is 11
6 Number of iterations is 12
5 Number of iterations is 13
2 Number of iterations is 14
2 Number of iterations is 15
3 Number of iterations is 16
1 Number of iterations is 17
2 Number of iterations is 18
96642 Number of iterations is 2
1 Number of iterations is 20
2 Number of iterations is 21
1 Number of iterations is 22
1 Number of iterations is 29
17266 Number of iterations is 3
2598 Number of iterations is 4
798 Number of iterations is 5
273 Number of iterations is 6
186 Number of iterations is 7
80 Number of iterations is 8
42 Number of iterations is 9
Reviewers: chandlerc, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28129
llvm-svn: 290699
emplace_back is not faster if it is equivalent to push_back. In this cases emplaced value had the
same type that the one stored in container. It is ugly and it might be even slower (see
Scott Meyers presentation about emplacement).
llvm-svn: 290685
when they are call edges at the leaf but may (transitively) be reached
via ref edges.
It turns out there is a simple rule: insert everything as a ref edge
which is a safe conservative default. Then we let the existing update
logic handle promoting some of those to call edges.
Note that it would be fairly cheap to make these call edges right away
if that is desirable by testing whether there is some existing call path
from the source to the target. It just seemed like slightly more
complexity in this code path that isn't strictly necessary. If anyone
feels strongly about handling this differently I'm happy to change it.
llvm-svn: 290649
This adds a combine that canonicalizes a chain of inserts which broadcasts
a value into a single insert + a splat shufflevector.
This fixes PR31286.
Differential Revision: https://reviews.llvm.org/D27992
llvm-svn: 290641
skipping indirectly recursive inline chains.
To do this, we implicitly build an inline stack for each callsite and
check prior to inlining that doing so would not form a cycle. This uses
the exact same technique and even shares some code with the legacy PM
inliner.
This solution remains deeply unsatisfying to me because it means we
cannot actually iterate the inliner externally. Doing so would not be
able to easily detect and avoid such cycles. Some day I would very much
like to have a solution that works without this internal state to detect
cycles, but this is not that day.
llvm-svn: 290590
PMULDQ/PMULUDQ vXi64 instructions only use the even numbered v2Xi32 input elements which SimplifyDemandedVectorElts should try and use.
This builds on r290554 which added supported for 128 and 256-bit.
llvm-svn: 290582
An earlier commit added support for unmasked scalar operations. At that time isel wouldn't generate an optimal sequence for masked operations, but that has now been fixed.
llvm-svn: 290566
inside of `InlineFunction`. Prior to this, call instructions are
specifically being rewritten and replaced within the inlined region,
invalidating some of the call sites.
Several of these regions are using the same technique to walk the
inlined region so this seems clearly safe up to this point.
I've also added a short circuit to the scan for call sites based on what
other code is doing.
With this, the most common crash I've found in the new inliner code is
fixed. I've turned it on for another test case that covers this
scenario.
I'll make my way through most of the other inliner test cases
just to get some easy coverage next.
llvm-svn: 290562
removing fully-dead comdats without removing dead entries in comdats
with live members.
This factors the core logic out of the current inliner's internals to
a reusable utility and leverages that in both places. The factored out
code should also be (minorly) more efficient in cases where we have very
few dead functions or dead comdats to consider.
I've added a test case to cover this behavior of the always inliner.
This is the last significant bug in the new PM's always inliner I've
found (so far).
llvm-svn: 290557
PMULDQ/PMULUDQ vXi64 instructions only use the even numbered v2Xi32 input elements which SimplifyDemandedVectorElts should try and use.
Differential Revision: https://reviews.llvm.org/D28119
llvm-svn: 290554