This is better for a number of reasons. Mostly style, but also:
1) Signed-unsigned comparison warnings disappear since there is
no loop index.
2) Iterating with the range-for style gives you back an entry
that has more than just a const char*, so it's more efficient
and more useful.
3) Makes code safter since the type system enforces that it's
impossible to index out of bounds.
llvm-svn: 283413
There were a number of issues with the Args class preventing
efficient use of strings and incoporating LLVM's StringRef class.
The two biggest were:
1. Backing memory stored in a std::string, so we would frequently
have to use const_cast to get a mutable buffer for passing to
various low level APIs.
2. backing std::strings stored in a std::list, which doesn't
provide random access.
I wanted to solve these two issues so that we could provide
StringRef access to the underlying arguments, and also a way
to provide range-based access to the underlying argument array
while still providing convenient c-style access via an argv style
const char**.
The solution here is to store arguments in a single "entry" class
which contains the backing memory, a StringRef with precomputed
length, and the quote char. The backing memory is a manually
allocated const char* so that it is not invalidated when the
container is resized, and there is a separate argv array provided
for c-style access.
Differential revision: https://reviews.llvm.org/D25099
llvm-svn: 283157
Summary:
This is a register context converter from Minidump to Linux reg context.
This knows the layout of the register context in the Minidump file
(which is the same as in Windows FYI) and as a result emits a binary data
buffer that matches the Linux register context binary layout.
This way we can reuse the existing RegisterContextLinux_x86_64 and
RegisterContextCorePOSIX_x86_64 classes.
Reviewers: labath, zturner
Subscribers: beanz, mgorny, lldb-commits, amccarth
Differential Revision: https://reviews.llvm.org/D24919
llvm-svn: 282529
This allows debugging of the JIT and other analyses of the internals of the
expression parser. I've also added a testcase that verifies that the setting
works correctly when off and on.
llvm-svn: 282434
CommandData breakpoint commands didn't know whether they were
Python or Command line commands, so they couldn't serialize &
deserialize themselves properly. Fix that.
I also changed the "breakpoint list" command to note in the output
when the commands are Python commands. Fortunately only one test
was relying on this explicit bit of text output.
llvm-svn: 282432
This change is very mechanical. All it does is change the
signature of `Options::GetDefinitions()` and `OptionGroup::
GetDefinitions()` to return an `ArrayRef<OptionDefinition>`
instead of a `const OptionDefinition *`. In the case of the
former, it deletes the sentinel entry from every table, and
in the case of the latter, it removes the `GetNumDefinitions()`
method from the interface. These are no longer necessary as
`ArrayRef` carries its own length.
In the former case, iteration was done by using a sentinel
entry, so there was no knowledge of length. Because of this
the individual option tables were allowed to be defined below
the corresponding class (after all, only a pointer was needed).
Now, however, the length must be known at compile time to
construct the `ArrayRef`, and as a result it is necessary to
move every option table before its corresponding class. This
results in this CL looking very big, but in terms of substance
there is not much here.
Differential revision: https://reviews.llvm.org/D24834
llvm-svn: 282188
This change introduces optional marking of the column within a source
line where a thread is stopped. This marking will show up when the
source code for a thread stop is displayed, when the debug info
knows the column information, and if the optional column marking is
enabled.
There are two separate methods for handling the marking of the stop
column:
* via ANSI terminal codes, which are added inline to the source line
display. The default ANSI mark-up is to underline the column.
* via a pure text-based caret that is added in the appropriate column
in a newly-inserted blank line underneath the source line in
question.
There are some new options that control how this all works.
* settings set stop-show-column
This takes one of 4 values:
* ansi-or-caret: use the ANSI terminal code mechanism if LLDB
is running with color enabled; if not, use the caret-based,
pure text method (see the "caret" mode below).
* ansi: only use the ANSI terminal code mechanism to highlight
the stop line. If LLDB is running with color disabled, no
stop column marking will occur.
* caret: only use the pure text caret method, which introduces
a newly-inserted line underneath the current line, where
the only character in the new line is a caret that highlights
the stop column in question.
* none: no stop column marking will be attempted.
* settings set stop-show-column-ansi-prefix
This is a text format that indicates the ANSI formatting
code to insert into the stream immediately preceding the
column where the stop column character will be marked up.
It defaults to ${ansi.underline}; however, it can contain
any valid LLDB format codes, e.g.
${ansi.fg.red}${ansi.bold}${ansi.underline}
* settings set stop-show-column-ansi-suffix
This is the text format that specifies the ANSI terminal
codes to end the markup that was started with the prefix
described above. It defaults to: ${ansi.normal}. This
should be sufficient for the common cases.
Significant leg-work was done by Adrian Prantl. (Thanks, Adrian!)
differential review: https://reviews.llvm.org/D20835
reviewers: clayborg, jingham
llvm-svn: 282105
This updates getters and setters to use StringRef instead of
const char *. I tested the build on Linux, Windows, and OSX
and saw no build or test failures. I cannot test any BSD
or Android variants, however I expect the required changes
to be minimal or non-existant.
llvm-svn: 282079
Serialize breakpoint names & the hardware_requested attributes.
Also added a few missing affordances to SBBreakpoint whose absence
writing the tests pointed out.
<rdar://problem/12611863>
llvm-svn: 282036
This converts Args::Unshift, Args::AddOrReplaceEnvironmentVariable,
and Args::ContainsEnvironmentVariable to use StringRefs. The code
is also simplified somewhat as a result.
llvm-svn: 281942
This patch also marks the const char* versions as =delete to prevent
their use. This has the potential to cause build breakages on some
platforms which I can't compile. I have tested on Windows, Linux,
and OSX. Best practices for fixing broken callsites are outlined in
Args.h in a comment above the deleted function declarations.
Eventually we can remove these =delete declarations, but for now they
are important to make sure that all implicit conversions from
const char * are manually audited to make sure that they do not invoke a
conversion from nullptr.
llvm-svn: 281919
Where possible, remove the const char* version. To keep the
risk and impact here minimal, I've only done the simplest
functions.
In the process, I found a few opportunities for adding some
unit tests, so I added those as well.
Tested on Windows, Linux, and OSX.
llvm-svn: 281799
This makes the code easier to grok, and since this is a very low
level function it also is very helpful to have this take a StringRef
since it means anyone higher up the chain who has a StringRef would
have to first convert it to a null-terminated string. This way it
can work equally well with StringRefs or const char*'s, which will
enable the conversion of higher up functions to StringRef.
Tested on Windows, Linux, and OSX and saw no regressions.
llvm-svn: 281642
Moved the guts of the code from CommandObjectBreakpoint to Target (should
have done it that way in the first place.) Added an SBBreakpointList class
so there's a way to specify which breakpoints to serialize and to report the
deserialized breakpoints.
<rdar://problem/12611863>
llvm-svn: 281520
I'm was trying to do some cleanup and code modernization and in
doing so I needed to change ParseMachCPUDashSubtypeTriple to take
a StringRef. To ensure I don't break anything, I'm adding some
unit tests for this function. As a side benefit, this also expands
test coverage of this function to all platforms, since in general
this code would rarely be exercised on non Mac platforms, and never
in the test suite.
llvm-svn: 281387
Plumb unique_ptrs<> all the way through the baton interface.
NFC, this is a minor improvement to remove the possibility of an
accidental pointer ownership issue.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D24495
llvm-svn: 281360
Still to come:
1) SB API's
2) Testcases
3) Loose ends:
a) serialize Thread options
b) serialize Exception resolvers
4) "break list --file" should list breakpoints contained in a file and
"break read -f 1 3 5" should then read in only those breakpoints.
<rdar://problem/12611863>
llvm-svn: 281273
The class is only used in the debugserver. The rest of lldb has the StringExtractor class.
Xcode project will need to be updated after this.
llvm-svn: 281226
Summary:
- Added an API to public interface that provides permissions (RWX) of
individual sections of an object file
- Earlier, there was no way to find out this information through SB
APIs
- A possible use case of this API is:
when a user wants to know the sections that have executable machine
instructions and want to write a tool on top of LLDB based on this
information
- Differential Revision: https://reviews.llvm.org/D24251
llvm-svn: 280924
Summary:
This adds the jModulesInfo packet, which is the equivalent of qModulesInfo, but it enables us to
query multiple modules at once. This makes a significant speed improvement in case the
application has many (over a hundred) modules, and the communication link has a non-negligible
latency. This functionality is accessed by ProcessGdbRemote::PrefetchModuleSpecs(), which does
the caching. GetModuleSpecs() is modified to first consult the cache before asking the remote
stub. PrefetchModuleSpecs is currently only called from POSIX-DYLD dynamic loader plugin, after
it reads the list of modules from the inferior memory, but other uses are possible.
This decreases the attach time to an android application by about 40%.
Reviewers: clayborg
Subscribers: tberghammer, lldb-commits, danalbert
Differential Revision: https://reviews.llvm.org/D24236
llvm-svn: 280919
mode in lldb works. I've been discussing this with Jim Ingham,
Greg Clayton, and Kate Stone for the past week or two.
Previously lldb would print three source lines (centered on the
line table entry line for the current line) followed by the assembly.
It would print the context information (module`function + offset)
before those three lines of source.
Now lldb will print up to two lines before/after the line table
entry. It prints two '*' characters for the line table line to
make it clear what line is showing assembly. There is one line of
whitespace before/after the source lines so the separation between
source & assembly is clearer. I don't print the context line
(module`function + offset). I stop printing context lines if it's
a different line table entry, or if it's a source line I've already
printed as context to another source line. If I have two line table
entries one after another for the same source line (I get these often
with clang - with different column information in them), I only print
the source line once.
I'm also using the target.process.thread.step-avoid-regexp setting
(which keeps you from stepping into STL functions that have been inlined
into your own code) and avoid printing any source lines from functions
that match that regexp.
When lldb disassembles into a new function, it will try to find the
declaration line # for the function and print all of the source lines
between the decl and the first line table entry (usually a { curly brace)
so we have a good chance of including the arguments, at least with the
debug info emitted by clang.
Finally, the # of source lines of context to show has been separated
from whether we're doing mixed source & assembly or not. Previously
specifying 0 lines of context would turn off mixed source & assembly.
I think there's room for improvement, and maybe some bugs I haven't
found yet, but it's in good enough shape to upstream and iterate at
this point.
I'm not sure how best to indicate which source line is the actual line
table # versus context lines. I'm using '**' right now. Both Kate
and Greg had the initial idea to reuse '->' (normally used to indicate
"currently executing source line") - I tried it but I wasn't thrilled,
I'm too used to the established meaning of ->.
Greg had the interesting idea of avoiding context source lines only
in two line table entries in the same source file. So we'd print
two lines before & after a source line, and then the next line table
entry (if it was on the next source line after those two context lines)
we'd display only the following two lines -- the previous two had just
been printed. If an inline source line was printed between these two,
though, we'd print the context lines for both of them. It's an
interesting idea, and I want to see how it works with both -O0 and -O3
codegen where we have different amounts of inlining.
<rdar://problem/27961419>
llvm-svn: 280906
Most of these issues arose as a result of header re-ordering, but
it turned up a real bug, which is that MSVC doesn't support
__attribute__((packed)) or __attribute__((aligned)). This was
working before because there's a Windows header that #defines
__attribute__(x) to nothing. We should fix this by removing
that #define entirely, and dealing with the fallout separately
which may turn up even more bugs.
I fixed this by replacing them with the corresponding LLVM
macros which understand how to do these operations on all the
different compilers.
llvm-svn: 280757
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
The commit introduced an array of const objects, which libstdc++ does not like. Make the object
non-const.
Also fix a compiler warning while I'm in there.
llvm-svn: 280697
When a process stops due to a crash, we get the crashing instruction and the
crashing memory location (if there is one). From the user's perspective it is
often unclear what the reason for the crash is in a symbolic sense.
To address this, I have added new fuctionality to StackFrame to parse the
disassembly and reconstruct the sequence of dereferneces and offsets that were
applied to a known variable (or fuction retrn value) to obtain the invalid
pointer.
This makes use of enhancements in the disassembler, as well as new information
provided by the DWARF expression infrastructure, and is exposed through a
"frame diagnose" command. It is also used to provide symbolic information, when
available, in the event of a crash.
The algorithm is very rudimentary, and it needs a bunch of work, including
- better parsing for assembly, preferably with help from LLVM
- support for non-Apple platforms
- cleanup of the algorithm core, preferably to make it all work in terms of
Operands instead of register/offset pairs
- improvement of the GetExpressioPath() logic to make prettier expression
paths, and
- better handling of vtables.
I welcome all suggestios, improvements, and testcases.
llvm-svn: 280692
This code represents the Week of Code work I did on bringing up
lldb-server LLGS support for Darwin. It does not include the
Xcode project changes needed, as we don't want to throw that switch
until more support is implemented (i.e. this change is inert, no
build systems use it yet. I've verified on Ubuntu 16.04, macOS
Xcode and macOS cmake builds).
This change does some minimal refactoring of code that is shared
with the Linux LLGS portion, moving it from NativeProcessLinux into
NativeProcessProtocol. That code is also used by NativeProcessDarwin.
Current state on Darwin:
* Process launching is implemented. (Attach is not).
Launching on devices has not yet been tested (FBS/BKS might
need a bit of work).
* Inferior waitpid monitoring and communication of exit status
via MainLoop callback is implemented.
* Memory read/write, breakpoints, thread register context, etc.
are not yet implemented. This impacts process stop/resume, as
the initial launch suspended immediately starts the process
up and running because it doesn't know it is supposed to remain
stopped.
* I implemented the equivalent of MachThreadList as
NativeThreadListDarwin, in anticipation that we might want to
factor out common parts into NativeThreadList{Protocol} and share
some code here. After writing it, though, the fallout from merging
Mach Task/Process into a single concept plus some other minor
changes makes the whole NativeThreadListDarwin concept nothing more
than dead weight. I am likely going to get rid of this class and
just manage it directly in NativeProcessDarwin, much like I did
for NativeProcessLinux.
* There is a stub-out call for starting a STDIO thread. That will
go away and adopt the MainLoop pselect-based IOObject reading.
I am developing the fully-integrated changes in the following repo,
which contains the necessary Xcode bits and the glue that enables
lldb-debugserver on a macOS system:
https://github.com/tfiala/lldb/tree/llgs-darwin
This change also breaks out a few of the lldb-server tests into
their own directory, and adds some $qHostInfo tests (not sure why
I didn't write those tests back when I initially implemented that
on the Linux side).
llvm-svn: 280604
The rewrite of StringExtractor::GetHexMaxU32 changes functionality in a way which makes
lldb-server crash. The crash (assert) happens when parsing the "qRegisterInfo0" packet, because
the function tries to drop_front more bytes than the packet contains. It's not clear to me
whether we should consider this a bug in the caller or the callee, but it any case, it worked
before, so I am reverting this until we can figure out what the proper interface should be.
llvm-svn: 280207
Makes Peek() return a StringRef instead of a const char*.
This leads to a few callers of Peek() being able to be made a
little nicer (for example using StringRef member functions instead
of c-style strncmp and related functions) and generally safer
usage.
llvm-svn: 280139
This is a NFC that adds more unit test coverage of the GetHex***
functions as well as the functions to extract numbers with a
specific endianness.
llvm-svn: 280124
MutableArrayRef<T> is essentially a safer version of passing around
(T*, length) pairs and provides some convenient functions for working
with the data without having to manually manipulate indices.
This is a minor NFC.
llvm-svn: 280123
StringExtractor::GetNameColonValue() looks for a substring of the
form "<name>:<value>" and returns <name> and <value> to the caller.
This results in two unnecessary string copies, since the name and
value are not translated in any way and simply returned as-is.
By converting this to return StringRefs we can get rid of hundreds
of string copies.
llvm-svn: 280000
I have some improvements to make to StringExtractor that require
using LLVM. debugserver can't take a dependency on LLVM but uses
this file, so I'm forking it off into StdStringExtractor and
StringExtractor, so that StringExtractor can take advantage of
some performance improvements and readability improvements that
LLVM can provide.
llvm-svn: 279997
std::atomic<uint64_t> requires 64-bit alignment in order to
guarantee atomicity. Normally the compiler is pretty good about
aligning types, but an exception to this is when the type is
passed by value as a function parameter. In this case, if your
stack is 4-byte aligned, most modern compilers (including clang
as of LLVM 4.0) fail to align the type, rendering the atomicity
ineffective.
A deeper investigation of the class's implementation suggests
that the use of atomic was in vain anyway, because if the class
were to be shared amongst multiple threads, there were already
other data races present, and that the proper way to ensure
thread-safe access to this data would be to use a mutex from a
higher level.
Since the std::atomic was not serving its intended purpose anyway,
and since the presence of it generates compiler errors on some
platforms that cannot be workaround, we remove std::atomic from
Address here. Although unlikely, if data races do resurface
the proper fix should involve a mutex from a higher level, or an
attempt to limit the Address's access to a single thread.
llvm-svn: 279994
When, for instance, "step-in" steps into a function that it doesn't want
to stop in (e.g. has no debug info) it will push a step-out plan to implement
the step out so it can then continue stepping. These step out's don't use
the result of the function stepped out of, so they shouldn't spend the time
to compute it.
llvm-svn: 279540
Take 2, with missing cmake line fixed. Build tested on
Ubuntu 14.04 with clang-3.6.
See docs/structured_data/StructuredDataPlugins.md for details.
differential review: https://reviews.llvm.org/D22976
reviewers: clayborg, jingham
llvm-svn: 279202
back up the iterator, as long as it still contains the address.
std::lower_bound will point us to the entry after the one we
are really interested in, leading to problems with backtracing
in corefiles.
<rdar://problem/27823549>
llvm-svn: 278901
Summary:
referencing a user-defined operator new was triggering an assert in clang because we were
registering the function name as string "operator new", instead of using the special operator
enum, which clang has for this purpose. Method operators already had code to handle this, and now
I extend this to cover free standing operator functions as well. Test included.
Reviewers: spyffe
Subscribers: sivachandra, paulherman, lldb-commits
Differential Revision: http://reviews.llvm.org/D17856
llvm-svn: 278670
Summary:
The following problem was occuring:
- broadcaster B had two listeners: L1 and L2 (thread T1)
- (T1) B has started to broadcast an event, it has locked a shared_ptr to L1 (in
ListenerIterator())
- on another thread T2 the penultimate reference to L1 was destroyed (the transient object in B is
now the last reference)
- (T2) the last reference to L2 was destroyed as well
- (T1) B has finished broadcasting the event to L1 and destroyed the last shared_ptr
- (T1) this triggered the destructor, which called into B->RemoveListener()
- (T1) all pointers in the m_listeners list were now stale, so RemoveListener emptied the list
- (T1) Eventually control returned to the ListenerIterator() for doing broadcasting, which was
still in the middle of iterating through the list
- (T1) Only now, it was holding onto a dangling iterator. BOOM.
I fix this issue by making sure nothing can interfere with the
iterate-and-remove-expired-pointers loop, by moving this logic into a single function, which
first locks (or clears) the whole list and then returns the list of valid and locked Listeners
for further processing. Instead of std::list I use an llvm::SmallVector which should hopefully
offset the fact that we create a copy of the list for the common case where we have only a few
listeners (no heap allocations).
A slight difference in behaviour is that now RemoveListener does not remove an element from the
list -- it only sets it's mask to 0, which means it will be removed during the next iteration of
GetListeners(). This is purely an implementation detail and it should not be externally
noticable.
I was not able to reproduce this bug reliably without inserting sleep statements into the code,
so I do not add a test for it. Instead, I add some unit tests for the functions that I do modify.
Reviewers: clayborg, jingham
Subscribers: tberghammer, lldb-commits
Differential Revision: https://reviews.llvm.org/D23406
llvm-svn: 278664
Options used to store a reference to the CommandInterpreter instance
in the base Options class. This made it impossible to parse options
independent of a CommandInterpreter.
This change removes the reference from the base class. Instead, it
modifies the options-parsing-related methods to take an
ExecutionContext pointer, which the options may inspect if they need
to do so.
Closes https://reviews.llvm.org/D23416
Reviewers: clayborg, jingham
llvm-svn: 278440
Factor out some common logic used to find the runtime library in a list
of modules.
Differential Revision: https://reviews.llvm.org/D23150
llvm-svn: 278368
Adapters for instrumentation runtimes have to do two basic things:
1) Load a runtime library.
2) Install breakpoints in that library.
This logic is duplicated in the adapters for asan and tsan. Factor it
out and document bits of it to make it easier to add new adapters.
I tested this with check-lldb, and double-checked
testcases/functionalities/{a,t}san.
Differential Revision: https://reviews.llvm.org/D23043
llvm-svn: 278367
gettimeofday() isn't defined without a special header. Rather
than rely on C apis, let's just use modern C++11 to do this
portably on all platforms using std::chrono.
llvm-svn: 278182
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177
This removes references to PT_XXX macros from the file, as they were not used anyway. It also
changes the macro used to check for the definition of __ptrace_request, as there are other C
libraries which do not define this type.
llvm-svn: 278001
It only contained a reimplementation of std::to_string, which I have replaced with usages of
pre-existing llvm::to_string (also, injecting members into the std namespace is evil).
llvm-svn: 278000
This introduces basic support for debugging OCaml binaries.
Use of the native compiler with DWARF emission support (see
https://github.com/ocaml/ocaml/pull/574) is required.
Available variables are considered as 64 bits unsigned integers,
their interpretation will be left to a OCaml-made debugging layer.
Differential revision: https://reviews.llvm.org/D22132
llvm-svn: 277443
Summary:
- Modified code that enables writing new user-defined commands
and use them through LLDB CLI. Modifications are:
-- Define the 'syntax' for each user-defined command
--- Added an argument in SBCommandInterpreter::AddCommand()
and SBCommand::AddCommand() API
--- Allow passing syntax for each user-defined command
--- Earlier, only 'help' could be defined and passed for commands
-- Passed 'number of arguments' entered on CLI for user-defined commands
--- Added an argument (number of options) in SBCommandPluginInterface::DoExecute()
API to know the number of arguments passed for commands
-- In CommandPluginInterfaceImplementation class:
--- Make the data member m_backend a shared_ptr
--- Avoids memory leaks of dynamically allocated SBCommandPluginInterface instances
created in lldb::PluginInitialize() API
Signed-off-by: Abhishek Aggarwal <abhishek.a.aggarwal@intel.com>
Reviewers: jingham, granata.enrico, clayborg
Subscribers: labath, lldb-commits
Differential Revision: https://reviews.llvm.org/D22863
llvm-svn: 277125
cache from ObjectFileMachO (very wrong place) to the DynamicLoader
plugins (better place). Not much change to the code itself, although
the old ObjectFileMachO method would try both the new dyld SPI and
reading the dyld_all_image_infos structure. In the new methods,
I've separated those into the appropriate DynamicLoader plugins.
llvm-svn: 277088
std::condition::wait_for takes a std::unique_lock<T>. The previous commit
accidentally left a reference to `m_mutex` instead of `lock`. Update that.
Should restore the android lldb builder to green.
llvm-svn: 277013
This finally removes the use of the Mutex and Condition classes. This is an
intricate patch as the Mutex and Condition classes were tied together.
Furthermore, many places had slightly differing uses of time values. Convert
timeout values to relative everywhere to permit the use of
std::chrono::duration, which is required for the use of
std::condition_variable's timeout. Adjust all Condition and related Mutex
classes over to std::{,recursive_}mutex and std::condition_variable.
This change primarily comes at the cost of breaking the TracingMutex which was
based around the Mutex class. It would be possible to write a wrapper to
provide similar functionality, but that is beyond the scope of this change.
llvm-svn: 277011
Summary:
The function was returning the null pointer for peeks of size zero, which seems like a sensible
thing to do, but is actually pretty easy to get bitten by that if you are extracting a variable
length field which happens to be of zero length and then doing pointer arithmetic on that (which
SymbolFileDWARF does, and ended up crashing in case of empty DW_AT_location).
This changes the function to return a null pointer only when it gets queried for data which is
outside of the range of the extractor, which is more c++-y, as one can still do reasonable things
with pointers to data of size zero (think, end() iterators).
I also add a test and fix some signedness warnings in the existing data extractor tests.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D22755
llvm-svn: 276734
"Incorrect" file name seen on Android whene the main executable is
called "app_process32" (or 64) but the linker specifies the package
name (e.g. com.android.calculator2). Additionally it can be present
in case of some linker bugs.
This CL adds logic to try to fetch the correct file name from the proc
file system based on the base address sepcified by the linker in case
we are failed to load the module by name.
Differential revision: http://reviews.llvm.org/D22219
llvm-svn: 276411
debugserver jGetSharedCacheInfo packet instead of reading
the dyld internal data structures directly. This code is
(currently) only used for ios native lldb's - I should really
move this ObjectFileMachO::GetProcessSharedCacheUUID method
somewhere else, it makes less and less sense being in the
file reader.
<rdar://problem/25251243>
llvm-svn: 276369
Summary:
We've had two copies of code for launching processes:
- one in NativeProcessLinux, used for launching debugged processes
- one in ProcessLauncherAndroid, used on android for launching all other kinds of processes
These have over time acquired support for various launch options, but neither supported all of
them. I now replace them with a single implementation ProcessLauncherLinux, which supports all
the options the individual versions supported and set it to be used to launch all processes on
linux.
This also works around the ETXTBSY issue on android when the process is started from the platform
instance, as that used to go through the version which did not contain the workaround.
Reviewers: tberghammer
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: https://reviews.llvm.org/D22457
llvm-svn: 276288
for the fall (northern hemisphere) 2016 Darwin platforms to learn
about loaded images, instead of reading dyld internal data structures.
These new SPI don't exist on older releases, and new packets are
needed from debugserver to use them (those changes are already committed).
I had to change the minimum deployment target for debugserver in the xcode
project file to macOS 10.10 so that debugserver will use the
[[NSProcessInfo processInfo] operatingSystemVersion]
call in MachProcess::GetOSVersionNumbers to get the operarting system
version # -- this API is only available in macOS 10.10 and newer
("OS X Yosemite", released Oct 2014). If we have many people building
llvm.org lldb on older systems still, we can back off on this for the
llvm.org sources.
There should be no change in behavior with this commit, either to
older darwin systems or newer darwin systems.
For now the new DynamicLoader plugin is never activated - I'm forcing
the old plugin to be used in DynamicLoaderDarwin::UseDYLDSPI.
I'll remove that unconditional use of the old plugin soon, so the
newer plugin is used on the newest Darwin platforms.
<rdar://problem/25251243>
llvm-svn: 276254
They will dump pretty-print (indentation, extra whitepsace) by default.
I'll make a change to ProcessGDBRemote soon so it stops sending JSON strings
to debugserver pretty-printed; it's unnecessary extra bytes being sent between
the two.
llvm-svn: 276079
a base class and a derived class, with the derived class containing
the methods specific to reading dyld's all_image_infos, dyld's
method of specifying images that have been loaded or unloaded, the
place where we put a breakpoint in dyld to get notified about newly
loaded or unloaded images.
This is in preparation for a second derived class which will use
some alternate methods for getting this information; that will be
a separate commit in the next few days.
There's a couple of ivars that should probably be in the derived
DyanmicLoaderMacOSX class instead of the base DynamicLoaderDarwin
class (m_dyld_image_infos, m_dyld_image_infos_stop_id). I don't
think I'll need to use these in the new derived class - I'll
move them down to DynamicLoaderMacOSX if it works out that way;
it'll simplify locking if I can do that.
<rdar://problem/25251243>
llvm-svn: 275733
review it for consistency, accuracy, and clarity. These changes attempt to
address all of the above while keeping the text relatively terse.
<rdar://problem/24868841>
llvm-svn: 275485
trade-offs. When LLDB's multi-line editing support was first introduced
for expressions / REPL contexts the behavior was as follows:
* The Return key is treated as a line-break except at the end of the input
buffer, where a completeness test is applied
This worked well enough when writing code, and makes it trivial to insert
new lines above code you've already typed. Just use cursor navigation to
move up and type freely. Where it was awkward is that the gesture to insert
a line break and end editing is conflated for most people. Sometimes you
want Return to end the editing session and other times you want to insert
a line break.
This commit changes the behavior as follows:
* The Return key is treated as the end of editing except at the end of the
input buffer, where a completeness test is applied
* The Meta+Return sequence is always treated as a line break. This is
consistent with conventions in Facebook and elsewhere since
Alt/Option+Return is often mapped to Meta+Return. The unfortunate
exception is on macOS where this *can* be the case, but isn't by
default. Sigh.
Note that by design both before and after the patch pasting a Return
character always introduces a line break.
<rdar://problem/26886287>
llvm-svn: 275482
Changes to the underlying logging infrastructure in Fall 2016 Darwin
OSes were no longer showing up NSLog messages in command-line LLDB.
This change restores that functionality, and adds test cases to
verify the new behavior.
rdar://26732492
llvm-svn: 275472
Background: symbols and functions can be looked up by full mangled name and by basename. SymbolFile and ObjectFile are expected to be able to do the lookups based on full mangled name or by basename, so when the user types something that is incomplete, we must be able to look it up efficiently. For example the user types "a:🅱️:c" as a symbol to set a breakpoint on, we will break this down into a 'lookup "c"' and then weed out N matches down to just the ones that match "a:🅱️:c". Previously this was done manaully in many functions by calling Module::PrepareForFunctionNameLookup(...) and then doing the lookup and manually pruning the results down afterward with duplicated code. Now all places use Module::LookupInfo to do the work in one place.
This allowed me to fix the name lookups to look for "func" with eFunctionNameTypeFull as the "name_type_mask", and correctly weed the results:
"func", "func()", "func(int)", "a::func()", "b::func()", and "a:🅱️:func()" down to just "func", "func()", "func(int)". Previously we would have set 6 breakpoints, now we correctly set just 3. This also extends to the expression parser when it looks up names for functions it needs to not get multiple results so we can call the correct function.
<rdar://problem/24599697>
llvm-svn: 275281
Summary:
Some thread plans have public contructors, some others have protected
constructors with friend classes. Not sure how these were determined,
but this thread plan is going to be required to implement trampoline
step-through on Windows.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D22230
llvm-svn: 275139
This feature was added to solve a lookup problem in expressions when local variables
shadow ivars. That solution requires fully realizing all local variables to evaluate
any expression, and can cause significant performance problems when evaluating
expressions in frames that have many complex locals.
Until we get a better solution, this setting mitigates the problem when you don't
have local variables that shadow ivars.
<rdar://problem/27226122>
llvm-svn: 274783
Summary:
This patch fills in the implementation of GetMemoryRegions() on the Linux and Mac OS core file implementations of lldb_private::Process (ProcessElfCore::GetMemoryRegions and ProcessMachCore::GetMemoryRegions.) The GetMemoryRegions API was added under: http://reviews.llvm.org/D20565
The patch re-uses the m_core_range_infos list that was recently added to implement GetMemoryRegionInfo in both ProcessElfCore and ProcessMachCore to ensure the returned regions match the regions returned by Process::GetMemoryRegionInfo(addr_t load_addr, MemoryRegionInfo ®ion_info).
Reviewers: clayborg
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D21751
llvm-svn: 274741
may be in a function that is non-ABI conformant, and the eh_frame
instructions correctly describe how to unwind out of this function,
but the assembly parsing / arch default unwind plans would be
incorrect.
This is to address a problem that Ravitheja Addepally reported in
http://reviews.llvm.org/D21221 - I wanted to try handling the problem
with this approach which I think may be more generally helpful,
Ravitheja tested it and said it solves the problem on Linux/FreeBSD.
Ravi has a test case in http://reviews.llvm.org/D21221 that will
be committed separately.
Thanks for all the help on this one, Ravi.
llvm-svn: 274700
- if a synthetic child comes from the same hierarchy as its parent object, then it can't be cached by SharedPointer inside the synthetic provider, or it will cause a reference loop;
- but, if a synthetic child is made from whole cloth (e.g. from an expression, a memory region, ...), then it better be cached by SharedPointer, or it will be cleared out and cause an assert() to fail if used at a later point
For most cases of self-rooted synthetic children, we have a flag we set "IsSyntheticChildrenGenerated", but we were not using it to track caching. So, what ended up happening is each provider would set up its own cache, and if it got it wrong, a hard to diagnose crash would ensue
This patch fixes that by centralizing caching in ValueObjectSynthetic - if a provider returns a self-rooted child (as per the flag), then it gets cached centrally by the ValueObject itself
This cache is used only for lifetime management and not later retrieval of child values - a different cache handles that (because we might have a mix of self-rooted and properly nested child values for the same parent, we can't trivially use this lifetime cache for retrieval)
Fixes rdar://26480007
llvm-svn: 274683
settings or raise no error if not found.
From time to time it is useful to add some setting to work around or enable
a transitory feature. We've been reluctant to remove them later because then
we will break folks .lldbinit files. With this change you can add an "experimental"
node to the settings. If you later decide you want to keep the option, just move
it to the level that contained the "experimental" setting and it will still be
found. Or just remove it - setting it will then silently fail and won't halt
the .lldbinit file execution.
llvm-svn: 274593
I changed "m_is_optimized" in lldb_private::CompileUnit over to be a lldb::LazyBool so that it can be set to eLazyBoolCalculate if it needs to be parsed later. With SymbolFileDWARFDebugMap, we don't actually open the DWARF in the .o files for each compile unit until later, and we can't tell if a compile unit is optimized ahead of time. So to avoid pulling in all .o right away just so we can answer the questions of "is this compile unit optimized" we defer it until a point where we will have the compile unit parsed.
<rdar://problem/26068360>
llvm-svn: 274585
We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like:
DW_OP_const8u (x)
DW_OP_form_tls_address
or
DW_OP_const8u (x)
DW_OP_GNU_push_tls_address
The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed.
This fix passes the "x" along to the thread:
virtual lldb::addr_t
lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr);
Then this is passed along to the DynamicLoader::GetThreadLocalData():
virtual lldb::addr_t
lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr);
This allows each DynamicLoader plug-in do the right thing for the current OS.
The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes.
I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread.
I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable.
<rdar://problem/23308080>
llvm-svn: 274366
We were checking for integer types only before this. So I added the ability for CompilerType objects to check for integer and enum types.
Then I searched for places that were using the CompilerType::IsIntegerType(...) function. Many of these places also wanted to be checking for enumeration types as well, so I have fixed those places. These are in the ABI plug-ins where we are figuring out which arguments would go in where in regisers/stack when making a function call, or determining where the return value would live. The real fix for this is to use clang to compiler a CGFunctionInfo and then modify the code to be able to take the IR and a calling convention and have the backend answer the questions correctly for us so we don't need to create a really bad copy of the ABI in each plug-in, but that is beyond the scope of this bug fix.
Also added a test case to ensure this doesn't regress in the future.
llvm-svn: 273750
Summary:
This adds new SB API calls and classes to allow a user of the SB API to obtain a full list of memory regions accessible within the process. Adding this to the API makes it possible use the API for tasks like scanning memory for blocks allocated with a header and footer to track down memory leaks, otherwise just inspecting every address is impractical especially for 64 bit processes.
These changes only add the API itself and a base implementation of GetMemoryRegions() to lldb_private::Process::GetMemoryRegions.
I will submit separate patches to fill in lldb_private::Process::GetMemoryRegionInfoList and GetMemoryRegionInfo for individual platforms.
The original discussion about this is here:
http://lists.llvm.org/pipermail/lldb-dev/2016-May/010203.html
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20565
llvm-svn: 273547
for TestNamespaceLookup.py; didn't see anything obviously wrong so I'll
need to look at this more closely before re-committing. (passed OK on
macOS ;)
llvm-svn: 273531
There's uses of "macosx" that will be more tricky to
change, like in triples (e.g. "x86_64-apple-macosx10.11") -
for now I'm just updating source comments and strings printed
for humans.
llvm-svn: 273524
During expression evaluation, the ClangExpressionParser preforms a
number of hard-coded fixups on the expression's IR before the module
is assembled and dispatched to be run in a ThreadPlan.
This patch allows the runtimes to register LLVM passes to be run over the
generated IR, that they may perform language or architecture-specfic fixups
or analyses over the generated expression.
This makes expression evaluation for plugins more flexible and allows
language-specific fixes to reside in their own module, rather than
littering the expression evaluator itself with language-specific fixes.
llvm-svn: 272800
This patch fixes various races between the time the private state thread is signaled to exit and the time it actually exits (during which it no longer responds to events). Previously, this was consistently causing 2-second timeout delays on process detach/stop for us.
This also prevents crashes that were caused by the thread controlling its own owning pointer while the controller was using it (copying the thread wrapper is not enough to mitigate this, since the internal thread object was getting reset anyway). Again, we were seeing this consistently.
Differential Revision: http://reviews.llvm.org/D21296
llvm-svn: 272682
Previously we eliminated the randomized scheme for finding memory when the
underlying process cannot allocate memory, and replaced it with an algorithm
that starts the allocations at 00x.
This was more determinstic, but runs into problems on embedded targets where the
pages near 0x0 are in fact interesting memory. To deal with those cases, this
patch does two things:
- It makes the default fallback be an address that is less likely than 0x0 to
contain interesting information.
- Before falling back to this, it adds an algorithm that consults the
GetMemoryRegionInfo() API to see if it can find an unmapped area.
This should eliminate the randomness (and unpredictable memory accesseas) of the
previous scheme while making expressions more likely to return correct results.
<rdar://problem/25545573>
llvm-svn: 272301
In order to make this happen, I have added permissions to sections so that we can know what the permissions are for a given section, and modified both core file plug-ins to override Process::GetMemoryRegionInfo() and answer things correctly.
llvm-svn: 272276
Rules are as follows for internal code using lldb::DisassemblerSP and lldb::InstructionSP:
1 - The disassembler needs to stay around as long as instructions do as the Instruction subclass now has a weak pointer to the disassembler
2 - The public API has been fixed so that if you get a SBInstruction, it will hold onto a strong reference to the disassembler in a new InstructionImpl class
This will keep code like like:
inst = lldb.target.ReadInstructions(frame.GetPCAddress(), 1).GetInstructionAtIndex(0)
inst.GetMnemonic()
Working as expected (not the SBInstructionList() that was returned by SBTarget.ReadInstructions() is gone, but "inst" has a strong reference inside of it to the disassembler and the instruction.
All code inside the LLDB shared library was verified to correctly hold onto the disassembler instance in all places.
<rdar://problem/24585496>
llvm-svn: 272069
as an asynchronous unwind plan source.
Two small fixes to the compact unwind dumper tool for
armv7 encodings.
A change to DWARFCallFrameInfo to strip the 0th bit on
addresses in eh_frame sections when armv7. In the
clang generated examples I have, the 0th bit is set for
thumb functions and that's causing the unwinder to pick
the wrong function for eh_frame info.
llvm-svn: 271970
Some compilers do not mark up C++ functions as extern "C" in the DWARF, so LLDB
has to fall back (if it is about to give up finding a symbol) to using the base
name of the function.
This fix also ensures that we search by full name rather than "auto," which
could cause unrelated C++ names to be found. Finally, it adds a test case.
<rdar://problem/25094302>
llvm-svn: 271551
This change implements dumping the executable, triple,
args and environment when using ProcessInfo::Dump().
It also tweaks the way Args::Dump() works so that it prints
a configurable label rather than argv[{index}]={value}. By
default it behaves the same, but if the Dump() method with
the additional arg is provided, it can be overridden. The
environment variables dumped as part of ProcessInfo::Dump()
make use of that.
lldb-server has been modified to dump the gdb-remote stub's
ProcessInfo before launching if the "gdb-remote process" channel
is logged.
llvm-svn: 271312
I was investigating an odd crash in lldb when the breakpoint site
goes to bump the hit counts of the locations it implements. I noticed
that the BreakpointLocationCollection wasn't locking itself for access and
modification. I don't see how that can cause the crash I'm seeing, but still
this is the right thing to do...
<rdar://problem/25178205>
llvm-svn: 270939
systems (ios, tvos, watchos). It's a simple format to use now that
I have i386/x86_64 supported already.
The unwind instructions are only valid at call sites -- that is,
when lldb is unwinding a frame in the middle of the stack. It
cannot be used for the currently executing frame; it has no information
about prologues/epilogues/etc.
<rdar://problem/12062336>
llvm-svn: 270658
What with all sorts of folks (TSAN, ASAN, queue detection, etc...) trying to
gather info by calling functions down in the lower layers of lldb, we've started
to see people running expressions simultaneously. The expression evaluation part
is okay, but only one RunThreadPlan can be active at a time. I added a lock to
enforce that.
<rdar://problem/26431072>
llvm-svn: 270593
Patch by Nitesh Jain.
Summary: These patch fix thread step-out for hard and soft float.
Reviewers: jaydeep, bhushan, clayborg
Differential Revision: http://reviews.llvm.org/D20416
llvm-svn: 270564
One of the things slowing us down is that ItaniumABILanguageRuntime class doesn't cache vtable to types in a map. This causes us, on every step, for every variable, to read the first pointer in a C++ type that could be dynamic and lookup the symbol, possibly in every symbol file (some symbols files on Darwin can end up having thousands of .o files when using DWARF in .o files, so thousands of .o files are searched each time).
This fix caches lldb_private::Address (the resolved vtable symbol address in section + offset format) to TypeAndOrName instances inside the one ItaniumABILanguageRuntime in a process. This allows caching of dynamic types and stops us from always doing deep searches in each file.
<rdar://problem/18890778>
llvm-svn: 270488
m_decl_objects is problematic because it assumes that each VarDecl has a unique
variable associated with it. This is not the case in inline contexts.
Also the information in this map can be reconstructed very easily without
maintaining the map. The rest of the testsuite passes with this cange, and I've
added a testcase covering the inline contexts affected by this.
<rdar://problem/26278502>
llvm-svn: 270474
The CL causes a build breakage on platforms where sizeof(double) == sizeof(long double)
and it incorrectly assumes that sizeof(double) and sizeof(long double) is the same
on the host and the target.
llvm-svn: 270214
This is a pretty straightforward first pass over removing a number of uses of
Mutex in favor of std::mutex or std::recursive_mutex. The problem is that there
are interfaces which take Mutex::Locker & to lock internal locks. This patch
cleans up most of the easy cases. The only non-trivial change is in
CommandObjectTarget.cpp where a Mutex::Locker was split into two.
llvm-svn: 269877
The main issues were:
- Listeners recently were converted over to used by getting a shared pointer to a listener. And when they listened to broadcasters they would get a strong reference added to them meaning the listeners would never go away. This caused memory usage to increase and would cause performance issue if many steps were done.
- The lldb_private::Process private state thread had an issue where if a "stop" contol signal was attempted to be sent to that thread, it could end up not responding in 2 seconds and end up getting cancelled which might cause us to cancel a thread that had a mutex locked and it would deadlock the test.
This change makes broadcasters hold onto weak references to listeners. It also fixes some bad threading code that had races inside of it by making the m_events_mutex be non-recursive and getting rid of fragile use of a Predicate<bool> to say that new events are available, and replacing it with using the m_events_mutex with a new m_events_condition to control access to the events in a safer way.
The private state thread now uses a safer way to communicate that the control event has been received by the private state thread: it makes a EventDataReceipt instance that it attaches to the event that sends the control to the private state thread and used this to synchronize the fact that the private state thread has received the event instead of using a Predicate<bool> to convey the info. When the signal event is received, it will pull the event off of the queue in the private state thread and cause the EventData::DoOnRemoval() to be called, which will signal that the event has been received. This cleans up the signal delivery notification so it doesn't rely on a member variable of the process class to convey the info.
std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
m_private_state_control_broadcaster.BroadcastEvent(signal, event_receipt_sp);
<rdar://problem/26256353> Listeners are being kept around longer than they should be due to recent changs
<rdar://problem/26256258> Private process state thread can be cancelled and cause deadlocks in test suite
llvm-svn: 269377
Summary:
The "file" variable in a LineEntry was mapped using target.source-map, except when stepping through inlined code. This patch adds a new variable to LineEntry, "original_file", that contains the original file from the debug info. "file" will continue to (possibly) be mapped.
Some code has been changed to use "original_file". This is code dealing with symbols. Code dealing with source files will still use "file". Reviewers, please confirm that these particular changes are correct.
Tests run on Ubuntu 12.04 show no regression.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20135
llvm-svn: 269250
Summary:
This replaces the C-style "void *" baton of the child process monitoring functions with a more
C++-like API taking a std::function. The motivation for this was that it was very difficult to
handle the ownership of the object passed into the callback function -- each caller ended up
implementing his own way of doing it, some doing it better than others. With the new API, one can
just pass a smart pointer into the callback and all of the lifetime management will be handled
automatically.
This has enabled me to simplify the rather complicated handshake in Host::RunShellCommand. I have
left handling of MonitorDebugServerProcess (my original motivation for this change) to a separate
commit to reduce the scope of this change.
Reviewers: clayborg, zturner, emaste, krytarowski
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20106
llvm-svn: 269205
Patch by Nitesh Jain.
Summary: The ArchSpec::m_flags will be set based on ELF flag ABI.
Reviewers: ovyalov, clayborg
Subscribers: lldb-commits, mohit.bhakkad, sagar, jaydeep, bhushan
Differential: D18858
llvm-svn: 269181
"Allow LanguageRuntimes to return an error if they fail in the course of dynamic type discovery
This is not meant to report that a value doesn't have a dynamic type - it is only meant as a mechanism to propagate actual type discovery issues (e.g. malformed type metadata for languages that have such a notion)
This information is used by ValueObjectDynamic to set its own m_error, which is a fairly sharp and heavyweight tool to begin with
For the time being, this is an architectural improvement but a practical no-op as no existing runtimes are actually setting errors"
I need to think about what I want to do in this space more carefully - this attempt might be too heavy of a hammer for the nail I am trying to fix, and I don't want to leave it in while I ponder
llvm-svn: 268686