PDL patterns are now supported via a new `PDLPatternModule` class. This class contains a ModuleOp with the pdl::PatternOp operations representing the patterns, as well as a collection of registered C++ functions for native constraints/creations/rewrites/etc. that may be invoked via the pdl patterns. Instances of this class are added to an OwningRewritePatternList in the same fashion as C++ RewritePatterns, i.e. via the `insert` method.
The PDL bytecode is an in-memory representation of the PDL interpreter dialect that can be efficiently interpreted/executed. The representation of the bytecode boils down to a code array(for opcodes/memory locations/etc) and a memory buffer(for storing attributes/operations/values/any other data necessary). The bytecode operations are effectively a 1-1 mapping to the PDLInterp dialect operations, with a few exceptions in cases where the in-memory representation of the bytecode can be more efficient than the MLIR representation. For example, a generic `AreEqual` bytecode op can be used to represent AreEqualOp, CheckAttributeOp, and CheckTypeOp.
The execution of the bytecode is split into two phases: matching and rewriting. When matching, all of the matched patterns are collected to avoid the overhead of re-running parts of the matcher. These matched patterns are then considered alongside the native C++ patterns, which rewrite immediately in-place via `RewritePattern::matchAndRewrite`, for the given root operation. When a PDL pattern is matched and has the highest benefit, it is passed back to the bytecode to execute its rewriter.
Differential Revision: https://reviews.llvm.org/D89107
Op with mapping from ops to corresponding shape functions for those op
in the library and mechanism to associate shape functions to functions.
The mapping of operand to shape function is kept separate from the shape
functions themselves as the operation is associated to the shape
function and not vice versa, and one could have a common library of
shape functions that can be used in different contexts.
Use fully qualified names and require a name for shape fn lib ops for
now and an explicit print/parse (based around the generated one & GPU
module op ones).
This commit reverts d9da4c3e73. Fixes
missing headers (don't know how that was working locally).
Differential Revision: https://reviews.llvm.org/D91672
Op with mapping from ops to corresponding shape functions for those op
in the library and mechanism to associate shape functions to functions.
The mapping of operand to shape function is kept separate from the shape
functions themselves as the operation is associated to the shape
function and not vice versa, and one could have a common library of
shape functions that can be used in different contexts.
Use fully qualified names and require a name for shape fn lib ops for
now and an explicit print/parse (based around the generated one & GPU
module op ones).
Differential Revision: https://reviews.llvm.org/D91672
This reverts commit e9b87f43bd.
There are issues with macros generating macros without an obvious simple fix
so I'm going to revert this and try something different.
New projects (particularly out of tree) have a tendency to hijack the existing
llvm configuration options and build targets (add_llvm_library,
add_llvm_tool). This can lead to some confusion.
1) When querying a configuration variable, do we care about how LLVM was
configured, or how these options were configured for the out of tree project?
2) LLVM has lots of defaults, which are easy to miss
(e.g. LLVM_BUILD_TOOLS=ON). These options all need to be duplicated in the
CMakeLists.txt for the project.
In addition, with LLVM Incubators coming online, we need better ways for these
incubators to do things the "LLVM way" without alot of futzing. Ideally, this
would happen in a way that eases importing into the LLVM monorepo when
projects mature.
This patch creates some generic infrastructure in llvm/cmake/modules and
refactors MLIR to use this infrastructure. This should expand to include
add_xxx_library, which is by far the most complicated bit of building a
project correctly, since it has to deal with lots of shared library
configuration bits. (MLIR currently hijacks the LLVM infrastructure for
building libMLIR.so, so this needs to get refactored anyway.)
Differential Revision: https://reviews.llvm.org/D85140
This dialect was introduced during the bring-up of the new LLVM dialect type
system for testing purposes. The main LLVM dialect now uses the new type system
and the test dialect is no longer necessary, so remove it.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85224
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This model makes thread-safe type manipulation hard and is being
progressively replaced with a cleaner MLIR model that replicates the type
system. Introduce a set of classes reflecting the LLVM IR type system in MLIR
instead of wrapping the existing types. These are currently introduced as
separate classes without affecting the dialect flow, and are exercised through
a test dialect. Once feature parity is reached, the old implementation will be
gradually substituted with the new one.
Depends On D84171
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D84339
- Create a pass that generates bugs based on trivially defined behavior for the purpose of testing the MLIR Reduce Tool.
- Implement the functionality inside the pass to crash mlir-opt in the presence of an operation with the name "crashOp".
- Register the pass as a test pass in the mlir-opt tool.
Reviewed by: jpienaar
Differential Revision: https://reviews.llvm.org/D83422
We see intermittent build errors on the windows buildbot because
mlir-opt is including Linalg headers which haven't been built yet.
This dependence should be resolved by declaring a PUBLIC dependence
on the Linalg library when building MLIROptMain.
- Exports MLIR targets to be used out-of-tree.
- mimicks `add_clang_library` and `add_flang_library`.
- Fixes libMLIR.so
After https://reviews.llvm.org/D77515 libMLIR.so was no longer containing
any object files. We originally had a cludge there that made it work with
the static initalizers and when switchting away from that to the way the
clang shlib does it, I noticed that MLIR doesn't create a `obj.{name}` target,
and doesn't export it's targets to `lib/cmake/mlir`.
This is due to MLIR using `add_llvm_library` under the hood, which adds
the target to `llvmexports`.
Differential Revision: https://reviews.llvm.org/D78773
[MLIR] Fix libMLIR.so and LLVM_LINK_LLVM_DYLIB
Primarily, this patch moves all mlir references to LLVM libraries into
either LLVM_LINK_COMPONENTS or LINK_COMPONENTS. This enables magic in
the llvm cmake files to automatically replace reference to LLVM components
with references to libLLVM.so when necessary. Among other things, this
completes fixing libMLIR.so, which has been broken for some configurations
since D77515.
Unlike previously, the pattern is now that mlir libraries should almost
always use add_mlir_library. Previously, some libraries still used
add_llvm_library. However, this confuses the export of targets for use
out of tree because libraries specified with add_llvm_library are exported
by LLVM. Instead users which don't need/can't be linked into libMLIR.so
can specify EXCLUDE_FROM_LIBMLIR
A common error mode is linking with LLVM libraries outside of LINK_COMPONENTS.
This almost always results in symbol confusion or multiply defined options
in LLVM when the same object file is included as a static library and
as part of libLLVM.so. To catch these errors more directly, there's now
mlir_check_all_link_libraries.
To simplify usage of add_mlir_library, we assume that all mlir
libraries depend on LLVMSupport, so it's not necessary to separately specify
it.
tested with:
BUILD_SHARED_LIBS=on,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB + LLVM_LINK_LLVM_DYLIB.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79067
[MLIR] Move from using target_link_libraries to LINK_LIBS
This allows us to correctly generate dependencies for derived targets,
such as targets which are created for object libraries.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79243
Three commits have been squashed to avoid intermediate build breakage.
A few libraries which are also Dialect libraries where independently
in the link line for mlir-opt. Remove them.
Differential Revision: https://reviews.llvm.org/D77927
Summary:
* Removal of FxpMathOps was discussed on the mailing list.
* Will send a courtesy note about also removing the Quantizer (which had some dependencies on FxpMathOps).
* These were only ever used for experimental purposes and we know how to get them back from history as needed.
* There is a new proposal for more generalized quantization tooling, so moving these older experiments out of the way helps clean things up.
Subscribers: mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, grosul1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77479
There is no need to directly depends on this from mlir-opt, some library
may transitively depend on a subset of the targets when enabled (like
NVPTX for Cuda codegen tests) but this is handled by CMake already.
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.
Differential Revision: https://reviews.llvm.org/D76161
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
CMake allows calling target_link_libraries() without a keyword,
but this usage is not preferred when also called with a keyword,
and has surprising behavior. This patch explicitly specifies a
keyword when using target_link_libraries().
Differential Revision: https://reviews.llvm.org/D75725
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
Collect a list of conversion libraries in cmake, so we don't have to
list these explicitly in most binaries.
Differential Revision: https://reviews.llvm.org/D75222
Instead of creating extra libraries we don't really need, collect a
list of all dialects and use that instead.
Differential Revision: https://reviews.llvm.org/D75221
Implement a pass to convert gpu.launch_func op into a sequence of
Vulkan runtime calls. The Vulkan runtime API surface is huge so currently we
don't expose separate external functions in IR for each of them, instead we
expose a few external functions to wrapper libraries which manages
Vulkan runtime.
Differential Revision: https://reviews.llvm.org/D74549
In the previous state, we were relying on forcing the linker to include
all libraries in the final binary and the global initializer to self-register
every piece of the system. This change help moving away from this model, and
allow users to compose pieces more freely. The current change is only "fixing"
the dialect registration and avoiding relying on "whole link" for the passes.
The translation is still relying on the global registry, and some refactoring
is needed to make this all more convenient.
Differential Revision: https://reviews.llvm.org/D74461
* Rename CMake target MLIROptMain to MLIROptLib:
The target provides the main library
* Rename CMake target MLIRMlirOptLib to MLIRMlirOptMain:
The target provides the main() entry function
At the moment, the Bazel configuration of TenorFlow maps the target
MlirOptLib to "lib/Support/MlirOptMain.cpp" and MlirOptMain to
"tools/mlir-opt/mlir-opt.cpp". This is the other way around in the CMake
configuration. As discussed in the context of the pull request
https://github.com/tensorflow/tensorflow/pull/36301, it seems useful to
revise the naming in the MLIR repo.
Differential Revision: https://reviews.llvm.org/D73778
mlir-opt needs to link against MLIRLoopAnalysis
This shouldn't be needed but MLIR "hack" for
"whole-archive" linking is not compatible with
CMake transitive dependencies management.
Differential Revision: https://reviews.llvm.org/D74097
The recent refactoring of build files broke building with the MIR CUDA
integration enabled. This fixes it by adding some additional
dependencies to mlir-opt.
Differential Revision: https://reviews.llvm.org/D74041
Summary:
This patch is a step towards enabling BUILD_SHARED_LIBS=on, which
builds most libraries as DLLs instead of statically linked libraries.
The main effect of this is that incremental build times are greatly
reduced, since usually only one library need be relinked in response
to isolated code changes.
The bulk of this patch is fixing incorrect usage of cmake, where library
dependencies are listed under add_dependencies rather than under
target_link_libraries or under the LINK_LIBS tag. Correct usage should be
like this:
add_dependencies(MLIRfoo MLIRfooIncGen)
target_link_libraries(MLIRfoo MLIRlib1 MLIRlib2)
A separate issue is that in cmake, dependencies between static libraries
are automatically included in dependencies. In the above example, if MLIBlib1
depends on MLIRlib2, then it is sufficient to have only MLIRlib1 in the
target_link_libraries. When compiling with shared libraries, it is necessary
to have both MLIRlib1 and MLIRlib2 specified if MLIRfoo uses symbols from both.
Reviewers: mravishankar, antiagainst, nicolasvasilache, vchuravy, inouehrs, mehdi_amini, jdoerfert
Reviewed By: nicolasvasilache, mehdi_amini
Subscribers: Joonsoo, merge_guards_bot, jholewinski, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73653
This commit adds a pattern to lower linalg.generic for reduction
to spv.GroupNonUniform* ops. Right now this only supports integer
reduction on 1-D input memref. Shader entry point ABI is queried
to make sure that the input memref's shape matches the local
workgroup's invocation configuration. This makes sure that the
workload fits in one local workgroup so that we can leverage
SPIR-V group non-uniform operations.
linglg.generic is a structured op that preserves the right level
of information. It is easier to recognize reduction at this level
than performing analysis on loops.
This commit also exposes `getElementPtr` in SPIRVLowering.h given
that it's a generally useful utility function.
Differential Revision: https://reviews.llvm.org/D73437
Summary:
Barrier is a simple operation that takes no arguments and returns
nothing, but implies a side effect (synchronization of all threads)
Reviewers: jdoerfert
Subscribers: mgorny, guansong, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72400
SPIR-V has a few mechanisms to control op availability: version,
extension, and capabilities. These mechanisms are considered as
different availability classes.
This commit introduces basic definitions for modelling SPIR-V
availability classes. Specifically, an `Availability` class is
added to SPIRVBase.td, along with two subclasses: MinVersion
and MaxVersion for versioning. SPV_Op is extended to take a
list of `Availability`. Each `Availability` instance carries
information for generating op interfaces for the corresponding
availability class and also the concrete availability
requirements.
With the availability spec on ops, we can now auto-generate the
op interfaces of all SPIR-V availability classes and also
synthesize the op's implementations of these interfaces. The
interface generation is done via new TableGen backends
-gen-avail-interface-{decls|defs}. The op's implementation is
done via -gen-spirv-avail-impls.
Differential Revision: https://reviews.llvm.org/D71930
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.
This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.
PiperOrigin-RevId: 283660308
This CL uses the pattern rewrite infrastructure to implement a simple VectorOps -> VectorOps legalization strategy to unroll coarse-grained vector operations into finer grained ones.
The transformation is written using local pattern rewrites to allow composition with other rewrites. It proceeds by iteratively introducing fake cast ops and cleaning canonicalizing or lowering them away where appropriate.
This is an example of writing transformations as compositions of local pattern rewrites that should enable us to make them significantly more declarative.
PiperOrigin-RevId: 281555100