Summary:
Warm up ASAN caches in ThreadedQuarantineTest to get more predictable
incremental heap memory usage measurements.
Reviewers: eugenis
Patch by Alex Shlyapnikov.
Subscribers: aemerson, kubabrecka, llvm-commits
Differential Revision: https://reviews.llvm.org/D28061
llvm-svn: 290371
Recommitted after formal approval.
LLVM's JIT is now the foundation of dynamic-compilation features for many languages. Clang also has low-level support for dynamic compilation (ASTImporter and ExternalASTSource, notably). How the compiler is set up for dynamic parsing is generally left up to individual clients, for example LLDB's C/C++/Objective-C expression parser and the ROOT project.
Although this arrangement offers external clients the flexibility to implement dynamic features as they see fit, the lack of an in-tree client means that subtle bugs can be introduced that cause regressions in the external clients but aren't caught by tests (or users) until much later. LLDB for example regularly encounters complicated ODR violation scenarios where it is not immediately clear who is at fault.
Other external clients (notably, Cling) rely on similar functionality, and another goal is to break this functionality up into composable parts so that any client can be built easily on top of Clang without requiring extensive additional code.
I propose that the parts required to build a simple expression parser be added to Clang. Initially, I aim to have the following features:
A piece that looks up external declarations from a variety of sources (e.g., from previous dynamic compilations, from modules, or from DWARF) and uses clear conflict resolution rules to reconcile differences, with easily understood errors. This functionality will be supported by in-tree tests.
A piece that works hand in hand with the LLVM JIT to resolve the locations of external declarations so that e.g. variables can be redeclared and (for high-performance applications like DTrace) external variables can be accessed directly from the registers where they reside.
This commit adds a tester that parses a sequence of source files and then uses them as source data for an expression. External references are resolved using an ExternalASTSource that responds to name queries using an ASTImporter. This is the setup that LLDB uses, and the motivating reason for MinimalImport in ASTImporter. When complete, this tester will implement the first of the above goals.
Differential Revision: https://reviews.llvm.org/D27180
llvm-svn: 290367
This is a succeeding patch of https://reviews.llvm.org/D22840 to address the
issue when a value to be merged into an int64 pair is in a different BB. Redoing
the store splitting in CodeGenPrepare so we can match the pattern across multiple
BBs and move some instructions into the same BB. We still keep the code in dag
combine so that we can catch cases that show up after DAG combining runs.
Differential Revision: https://reviews.llvm.org/D25914
llvm-svn: 290365
program
Offload related code is not quite ready yet, but some simple examples
must not crash the compiler. Patch fixes the problem in offloading code
with exceptions.
llvm-svn: 290364
This is for splitMergedValStore in DAG Combine to share the target query interface
with similar logic in CodeGenPrepare.
Differential Revision: https://reviews.llvm.org/D24707
llvm-svn: 290363
Follow up to D27209 fix, this patch now properly handles single transient
instruction in basic block.
Patch by Aleksandar Beserminji.
Differential Revision: https://reviews.llvm.org/D27856
llvm-svn: 290361
This patch fixes use of incorrect `%zi` to format a plain `int`, and using
`%llu` to format a `uint64_t`. The fix is to use the new typesafe
`llvm::Formatv` based API.
Differential Revision: https://reviews.llvm.org/D28028
Subscribers: lldb-commits
llvm-svn: 290359
COFF has a 2**16 section limit, and on Win64, every COMDAT function
creates at least 3 sections: .text, .pdata, and .xdata. For MSVC, we
enable bigobj on a file-by-file basis, but GCC appears to hit the limit
on different files.
Fixes PR25953
llvm-svn: 290358
When the pipeliner is renaming phi values, it may need to iterate through
the phi operands to check for other phis. However, the pipeliner should
stop once it reaches a phi that is outside the pipelined loop.
Also, when the generateExistingPhis code is unable to reuse an existing
phi, the default code that computes the PhiOp2 is only to be used when
the pipeliner is generating the kernel. Otherwise, the phi may be a value
computed earlier in the same epilog.
Patch by Brendon Cahoon.
llvm-svn: 290355
Summary: This patch attempts to fix test patching-unpatching.cc . The new code flushes the instruction cache after modifying the program at runtime.
Reviewers: dberris, rengolin
Subscribers: llvm-commits, iid_iunknown, aemerson
Differential Revision: https://reviews.llvm.org/D27996
llvm-svn: 290354
I don't remember why I didn't make alloc_size only applicable to
Functions a year ago, but I can't see any compelling reason not to do
so now.
Fixes PR31453.
llvm-svn: 290353
Update the GTestChecker to tighten up the API detection and make it
cleaner in response to post-commit feedback. Also add tests for when
temporary destructors are enabled to make sure we get the expected behavior
when inlining constructors for temporaries.
llvm-svn: 290352
The code have been developed by Daniel Berlin over the years, and
the new implementation goal is that of addressing shortcomings of
the current GVN infrastructure, i.e. long compile time for large
testcases, lack of phi predication, no load/store value numbering
etc...
The current code just implements the "core" GVN algorithm, although
other pieces (load coercion, phi handling, predicate system) are
already implemented in a branch out of tree. Once the core is stable,
we'll start adding pieces on top of the base framework.
The test currently living in test/Transform/NewGVN are a copy
of the ones in GVN, with proper `XFAIL` (missing features in NewGVN).
A flag will be added in a future commit to enable NewGVN, so that
interested parties can exercise this code easily.
Differential Revision: https://reviews.llvm.org/D26224
llvm-svn: 290346
Warnings with suppress-on-sink are discarded during FlushReports when
BugReporter notices that all paths in ExplodedGraph that pass through the
warning eventually run into a sink node.
However, suppress-on-sink fails to filter out false positives when the analysis
terminates too early - by running into analyzer limits, such as block count
limits or graph size limits - and the interruption hits the narrow window
between throwing the leak report and reaching the no-return function call. In
such case the report is there, however suppression-on-sink doesn't work, because
the sink node was never constructed in the incomplete ExplodedGraph.
This patch implements a very partial solution: also suppress reports thrown
against a statement-node that corresponds to a statement that belongs to a
no-return block of the CFG.
rdar://problem/28832541
Differential Revision: https://reviews.llvm.org/D28023
llvm-svn: 290341
Summary: This is needed for later SDWA support in CodeGen.
Reviewers: vpykhtin, tstellarAMD
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D27412
llvm-svn: 290338
Summary: Real instruction should copy constraints from real instruction. This allows auto-generated disassembler to correctly process tied operands.
Reviewers: nhaustov, vpykhtin, tstellarAMD
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D27847
llvm-svn: 290336
This is last known noticable fatal() in target.cpp.
We also have other ones for unknown relocations or
creating unknown targets, but that one can be just error I think.
Used yaml2obj to generate test.
Differential revision: https://reviews.llvm.org/D28049
llvm-svn: 290335
Vectors returned form that function contained nullptrs or Undefined symbols.
This patch filter them out. This makes use of the function a bit easier.
llvm-svn: 290334
Replacing the memory operand in the ymm version of VPMADDWD from i128mem to i256mem.
Differential Revision: https://reviews.llvm.org/D28024
llvm-svn: 290333
Previously, that was an alias to -color-diagnostics=auto. However,
Clang's -fcolor-diagnostics is an alias to -fcolor-diagnostics=always,
so that was confusing. This patch fixes that issue.
llvm-svn: 290332
I was staring at these and didn't realize these were module-layer
proxies as opposed to some other layer. Justin and I have a plan to
rename things to make the names themselves much easier to reason about,
but I at least want the CHECK lines to be precise for now.
llvm-svn: 290328
declarations.
We're using a custom class here instead of the helper template, these
bits just didn't get deleted when the other bits did get deleted. This
was found by a really nice MSVC warning about explicitly instantiating
a template where some member functions aren't defined and thus can't be
instantiatied.
llvm-svn: 290327
Merge all VFS mapped files inside -ivfsoverlay inputs into the vfs
overlay provided by the crash reproducer. This is the last missing piece
to allow crash reproducers to fully work with user frameworks; when
combined with headermaps, it allows clang to find additional frameworks.
rdar://problem/27913709
llvm-svn: 290326
from the old pass manager in the new one.
I'm not trying to support (initially) the numerous options that are
currently available to customize the pass pipeline. If we end up really
wanting them, we can add them later, but I suspect many are no longer
interesting. The simplicity of omitting them will help a lot as we sort
out what the pipeline should look like in the new PM.
I've also documented to the best of my ability *why* each pass or group
of passes is used so that reading the pipeline is more helpful. In many
cases I think we have some questionable choices of ordering and I've
left FIXME comments in place so we know what to come back and revisit
going forward. But for now, I've left it as similar to the current
pipeline as I could.
Lastly, I've had to comment out several places where passes are not
ported to the new pass manager or where the loop pass infrastructure is
not yet ready. I did at least fix a few bugs in the loop pass
infrastructure uncovered by running the full pipeline, but I didn't want
to go too far in this patch -- I'll come back and re-enable these as the
infrastructure comes online. But I'd like to keep the comments in place
because I don't want to lose track of which passes need to be enabled
and where they go.
One thing that seemed like a significant API improvement was to require
that we don't build pipelines for O0. It seems to have no real benefit.
I've also switched back to returning pass managers by value as at this
API layer it feels much more natural to me for composition. But if
others disagree, I'm happy to go back to an output parameter.
I'm not 100% happy with the testing strategy currently, but it seems at
least OK. I may come back and try to refactor or otherwise improve this
in subsequent patches but I wanted to at least get a good starting point
in place.
Differential Revision: https://reviews.llvm.org/D28042
llvm-svn: 290325
When DwarfExpression is emitting a fragment that is located in a
register and that fragment is smaller than the register, and the
register must be composed from sub-registers (are you still with me?)
the last DW_OP_piece operation must not be larger than the size of the
fragment itself, since the last piece of the fragment could be smaller
than the last subregister that is being emitted.
rdar://problem/29779065
llvm-svn: 290324
Previously, you had to call initDemangledSyms() before accessing DemangledSyms.
Now getDemangledSyms() initializes it and then returns it. So it is now less easy
to use it in a wrong way.
llvm-svn: 290323