shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
Fix the RegularExpression class so it has a real copy constructor.
Fix the breakpoint setting with multiple shared libraries so it makes
one breakpoint not one per shared library.
Add SBFileSpecList, to be used to expose the above to the SB interface (not done yet.)
llvm-svn: 140225
to execute expressions even in the absence of a process.
This allows expressions to run in situations where the
target cannot run -- e.g., to perform calculations based
on type information, or to inspect a binary's static
data.
This modification touches the following files:
lldb-private-enumerations.h
Introduce a new enum specifying the policy for
processing an expression. Some expressions should
always be JITted, for example if they are functions
that will be used over and over again. Some
expressions should always be interpreted, for
example if the target is unsafe to run. For most,
it is acceptable to JIT them, but interpretation
is preferable when possible.
Target.[h,cpp]
Have EvaluateExpression now accept the new enum.
ClangExpressionDeclMap.[cpp,h]
Add support for the IR interpreter and also make
the ClangExpressionDeclMap more robust in the
absence of a process.
ClangFunction.[cpp,h]
Add support for the new enum.
IRInterpreter.[cpp,h]
New implementation.
ClangUserExpression.[cpp,h]
Add support for the new enum, and for running
expressions in the absence of a process.
ClangExpression.h
Remove references to the old DWARF-based method
of evaluating expressions, because it has been
superseded for now.
ClangUtilityFunction.[cpp,h]
Add support for the new enum.
ClangExpressionParser.[cpp,h]
Add support for the new enum, remove references
to DWARF, and add support for checking whether
the expression could be evaluated statically.
IRForTarget.[h,cpp]
Add support for the new enum, and add utility
functions to support the interpreter.
IRToDWARF.cpp
Removed
CommandObjectExpression.cpp
Remove references to the obsolete -i option.
Process.cpp
Modify calls to ClangUserExpression::Evaluate
to pass the correct enum (for dlopen/dlclose)
SBValue.cpp
Add support for the new enum.
SBFrame.cpp
Add support for he new enum.
BreakpointOptions.cpp
Add support for the new enum.
llvm-svn: 139772
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
DWARF accelerator table sections to the DWARF parser. These sections are similar
to the .debug_pubnames and .debug_pubtypes, but they are designed to be hash tables
that are saved to disc in a way that the sections can just be loaded into memory
and used without any work on the debugger side. The .debug_pubnames and .debug_pubtypes
sections are not ordered, contain a copy of the name in the section itself which
makes these sections quite large, they only include publicly exported names (so no
static functions, no types defined inside functions), many compilers put different
information in them making them very unreliable so most debugger ignore these sections
and parse the DWARF on their own. The tables must also be parsed and sorted in order
to be used effectively. The new sections can be quickly loaded and very efficiently be used
to do name to DIE lookups with very little up front work. The format of these new
sections will be changing while we work out the bugs, but we hope to have really
fast name to DIE lookups soon.
llvm-svn: 138979
plug-ins are add on plug-ins for the lldb_private::Process class that can add
thread contexts that are read from memory. It is common in kernels to have
a lot of threads that are not currently executing on any cores (JTAG debugging
also follows this sort of thing) and are context switched out whose state is
stored in memory data structures. Clients can now subclass the OperatingSystem
plug-ins and then make sure their Create functions correcltly only enable
themselves when the right binary/target triple are being debugged. The
operating system plug-ins get a chance to attach themselves to processes just
after launching or attaching and are given a lldb_private::Process object
pointer which can be inspected to see if the main executable, target triple,
or any shared libraries match a case where the OS plug-in should be used.
Currently the OS plug-ins can create new threads, define the register contexts
for these threads (which can all be different if desired), and populate and
manage the thread info (stop reason, registers in the register context) as
the debug session goes on.
llvm-svn: 138228
The category is enabled by default. If you run into issues with it, disable it and the previous behavior of LLDB is restored
** This is a temporary solution. The general solution to having formatters pulled in at startup should involve going through the Platform.
Fixed an issue in type synthetic list where a category with synthetic providers in it was not shown if all the providers were regex-based
llvm-svn: 137850
- They now have an SBCommandReturnObject instead of an SBStream as third argument
- The class CommandObjectPythonFunction has been merged into CommandObjectCommands.cpp
- The command to manage them is now:
command script with subcommands add, list, delete, clear
command alias is returned to its previous functionality
- Python commands are now part of an user dictionary, instead of being seen as aliases
llvm-svn: 137785
It is now possible to use 'command alias --python' to define a command name that actually triggers execution of a Python function
(e.g. command alias --python foo foo_impl makes a command named 'foo' that runs Python function 'foo_impl')
The Python function foo_impl should have as signature: def foo_impl(debugger, args, stream, dict): where
debugger is an object wrapping an LLDB SBDebugger
args is the command line arguments, as an unparsed Python string
stream is an SBStream that represents the standard output
dict is an internal utility parameter and should be left untouched
The function should return None on no error, or an error string to describe any problems
llvm-svn: 137722
problem in which the following cast:
–
expr (int (*)(const char*, ...))printf
-
caused a crash. This had several causes:
- First, Clang did not support implicit
casts of a function of unknown type to
a function pointer.
- Second, after this was fixed, the
Clang AST importer did not support
importing function pointer types
produced by resolving these casts.
These two problems are now resolved, and
I have added a test case to verify that
they work. I also did a little bit of
build-system cleanup because we now use
libEnhancedDisassembly.a instead of the
.dylib.
llvm-svn: 137338
Access to synthetic children by name:
if your object has a synthetic child named foo you can now type
frame variable object.foo (or ->foo if you have a pointer)
and that will print the value of the synthetic child
(if your object has an actual child named foo, the actual child prevails!)
this behavior should also work in summaries, and you should be able to use
${var.foo} and ${svar.foo} interchangeably
(but using svar.foo will mask an actual child named foo)
llvm-svn: 137314
the SBType implementation classes.
Fixed LLDB core and the test suite to not use deprecated SBValue APIs.
Added a few new APIs to SBValue:
int64_t
SBValue::GetValueAsSigned(int64_t fail_value=0);
uint64_t
SBValue::GetValueAsUnsigned(uint64_t fail_value=0)
llvm-svn: 136829
- you can now define a Python class as a synthetic children producer for a type
the class must adhere to this "interface":
def __init__(self, valobj, dict):
def get_child_at_index(self, index):
def get_child_index(self, name):
then using type synth add -l className typeName
(e.g. type synth add -l fooSynthProvider foo)
(This is still WIP with lots to be added)
A small test case is available also as reference
llvm-svn: 135865
(e.g. ${var%S}). this might already be the default if your variable is of an aggregate type
new feature: synthetic filters. you can restrict the number of children for your variables to only a meaningful subset
- the restricted list of children obeys the typical rules (e.g. summaries prevail over children)
- one-line summaries show only the filtered (synthetic) children, if you type an expanded summary string, or you use Python scripts, all the real children are accessible
- to provide a synthetic children list use the "type synth add" command, as in:
type synth add foo_type --child varA --child varB[0] --child varC->packet->flags[1-4]
(you can use ., ->, single-item array operator [N] and bitfield operator [N-M]; array slice access is not supported, giving simplified names to expression paths is not supported)
- a new -S option to frame variable and target variable lets you override synthetic children and instead show real ones
llvm-svn: 135731
Code cleanup:
- The Format Manager implementation is now split between two files: FormatClasses.{h|cpp} where the
actual formatter classes (ValueFormat, SummaryFormat, ...) are implemented and
FormatManager.{h|cpp} where the infrastructure classes (FormatNavigator, FormatManager, ...)
are contained. The wrapper code always remains in Debugger.{h|cpp}
- Several leftover fields, methods and comments from previous design choices have been removed
type category subcommands (enable, disable, delete) now can take a list of category names as input
- for type category enable, saying "enable A B C" is the same as saying
enable C
enable B
enable A
(the ordering is relevant in enabling categories, and it is expected that a user typing
enable A B C wants to look into category A, then into B, then into C and not the other
way round)
- for the other two commands, the order is not really relevant (however, the same inverted ordering
is used for consistency)
llvm-svn: 135494
"struct sockaddr_storage" into a new host class called SocketAddress. This
will allow us to control the host specific implementations (such as how to
get the length) into a single Host specific class.
llvm-svn: 135488
an executable file if it is right next to a dSYM file that is found using
DebugSymbols. The code also looks into a bundle if the dSYM file is right
next to a bundle.
Modified the MacOSX kernel dynamic loader plug-in to correctly set the load
address for kext sections. This is a tad tricky because of how LLDB chooses
to treat mach-o segments with no name. Also modified the loader to properly
handle the older version 1 kext summary info.
Fixed a crasher in the Mach-o object file parser when it is trying to set
the section size correctly for dSYM sections.
Added packet dumpers to the CommunicationKDP class. We now also properly
detect address byte sizes based on the cpu type and subtype that is provided.
Added a read memory and read register support to CommunicationKDP. Added a
ThreadKDP class that now uses subclasses of the RegisterContextDarwin_XXX for
arm, i386 and x86_64.
Fixed some register numbering issues in the RegisterContextDarwin_arm class
and added ARM GDB numbers to the ARM_GCC_Registers.h file.
Change the RegisterContextMach_XXX classes over to subclassing their
RegisterContextDarwin_XXX counterparts so we can share the mach register
contexts between the user and kernel plug-ins.
llvm-svn: 135466
Implemented connect, disconnect, reattach, version, and hostinfo.
Modified the ConnectionFileDescriptor class to be able to handle UDP.
Added a new Stream subclass called StreamBuffer that is backed by a
llvm::SmallVector for better efficiency.
Modified the DataExtractor class to have a static function that can
dump hex bytes into a stream. This is currently being used to dump incoming
binary packet data in the KDP plug-in.
llvm-svn: 135338
same as the old "connect://<host>:<port>". Also added the ability to
connect using "udp://<host>:<port>" which will open a connected
datagram socket. I need to find a way to specify a non connected
datagram socket as well.
We might need to start setting some settings in the URL itself,
maybe something like:
udp://<host>:<port>?connected=yes
udp://<host>:<port>?connected=no
I am open to suggestions for URL settings.
Also did more work on the KDP darwin kernel plug-in.
llvm-svn: 135277
- you can use a Python script to write a summary string for data-types, in one of
three ways:
-P option and typing the script a line at a time
-s option and passing a one-line Python script
-F option and passing the name of a Python function
these options all work for the "type summary add" command
your Python code (if provided through -P or -s) is wrapped in a function
that accepts two parameters: valobj (a ValueObject) and dict (an LLDB
internal dictionary object). if you use -F and give a function name,
you're expected to define the function on your own and with the right
prototype. your function, however defined, must return a Python string
- test case for the Python summary feature
- a few quirks:
Python summaries cannot have names, and cannot use regex as type names
both issues will be fixed ASAP
major redesign of type summary code:
- type summary working with strings and type summary working with Python code
are two classes, with a common base class SummaryFormat
- SummaryFormat classes now are able to actively format objects rather than
just aggregating data
- cleaner code to print descriptions for summaries
the public API now exports a method to easily navigate a ValueObject hierarchy
New InputReaderEZ and PriorityPointerPair classes
Several minor fixes and improvements
llvm-svn: 135238
- formats %s %char[] %c and %a now work to print 0-terminated c-strings if they are applied to a char* or char[] even without the [] operator (e.g. ${var%s})
- array formats (char[], intN[], ..) now work when applied to an array of a scalar type even without the [] operator (e.g. ${var%int32_t[]})
LLDB will not crash because of endless loop when trying to obtain a summary for an object that has no value and references itself in its summary string
In many cases, a wrong summary string will now display an "<error>" message instead of giving out an empty string
llvm-svn: 135007
new GetValueForExpressionPath() method in ValueObject to navigate expression paths in a more bitfield vs slices aware way
changes to the varformats.html document (WIP)
llvm-svn: 134679
group class: OptionGroupVariable. It gets initialized with
a boolean that indicates if the frame specific options are
included so that this can be used in both the "frame variable"
and "target variable" commands.
Removed the global functionality from the "frame variable"
command. Users should switch to using the "target variable"
command.
llvm-svn: 134594
- ${*expr} now simply means to dereference expr before actually using it
- bitfields, array ranges and pointer ranges now work in a (hopefully) more natural and language-compliant way
a new class TypeHierarchyNavigator replicates the behavior of the FormatManager in going through type hierarchies
when one-lining summary strings, children's summaries can be used as well as values
llvm-svn: 134458
implements three commands:
type summary add <format> <typename1> [<typename2> ...]
type summary delete <typename1> [<typename2> ...]
type summary list [<typename1> [<typename2>] ...]
type summary clear
This allows you to specify the default format that will be used to display
summaries for variables, shown when you use "frame variable" or "expression", or the SBValue classes.
Examples:
type summary add "x = ${var.x}" Point
type summary list
type summary add --one-liner SimpleType
llvm-svn: 134108
inspection of namespaces in the expression parser.
ClangExpressionDeclMap hitherto reported that namespaces had
been completely imported, even though the namespaces are
returned empty. To deal with this situation, ClangASTSource
was recently extended with an API to complete incomplete type
definitions, and, for greater efficiency, to complete these
definitions partially, returning only those objects that have
a given name.
This commit supports these APIs on LLDB's side, and uses it
to provide information on types resident in namespaces.
Namespaces are now imported as they were -- that is to say,
empty -- but with minimal import mode on. This means that
Clang will come back and request their contents by name as
needed. We now respond with information on the contained
types; this will be followed soon by information on functions
and variables.
llvm-svn: 133852
This commit adds a new top level command named "type". Currently this command
implements three commands:
type format add <format> <typename1> [<typename2> ...]
type format delete <typename1> [<typename2> ...]
type format list [<typename1> [<typename2>] ...]
This allows you to specify the default format that will be used to display
types when you use "frame variable" or "expression", or the SBValue classes.
Examples:
// Format uint*_t as hex
type format add x uint16_t uint32_t uint64_t
// Format intptr_t as a pointer
type format add p intptr_t
The format characters are the same as "printf" for the most part with many
additions. These format character specifiers are also used in many other
commands ("frame variable" for one). The current list of format characters
include:
a - char buffer
b - binary
B - boolean
c - char
C - printable char
d - signed decimal
e - float
f - float
g - float
i - signed decimal
I - complex integer
o - octal
O - OSType
p - pointer
s - c-string
u - unsigned decimal
x - hex
X - complex float
y - bytes
Y - bytes with ASCII
llvm-svn: 133728