As detailed on PR43463, this fixes a static analyzer null dereference warning by sinking Changed = true into the if() blocks where the MIB is actually created.
I did a quick check that suggested that one of those if() blocks is always guaranteed to be hit (so we could change it to if-else), but this seems like a safer approach
Differential Revision: https://reviews.llvm.org/D73883
We have to be careful in SimplifyDemandedBits with loads in case we attempt to combine back to a constant (which then gets turned into a constant pool load again), but we can at least set the upper KnownBits for a ZEXTLoad to zero.
The fix in b3d7d1061d compiled nicely,
but didn't link because at least the VS 2017 version I use doesn't
have the builtin yet. Instead, make use of the builtin with MSVC
conditional on VS 2019 or later.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73885
Otherwise Visual Studio 2017 will complain about
llvm::StringRef::strlen not being constexpr:
StringRef.h(80): error C3615: constexpr function 'llvm::StringRef::strLen' cannot result in a constant expression
StringRef.h(84): note: failure was caused by call of undefined function or one not declared 'constexpr'
These instructions can set the exception in FPSW. But I
don't think they can change FPCW. So this looks like a typo.
Differential Revision: https://reviews.llvm.org/D73864
We previously instantiated type-constraints of template type parameters along with the type parameter itself,
this caused problems when the type-constraints created by abbreviated templates refreneced other parameters
in the abbreviated templates.
When encountering a template type parameter with a type constraint, if it is implicit, delay instantiation of
the type-constraint until the function parameter which created the invented template type parameter is
instantiated.
Reland after fixing bug caused by another flow reaching SubstParmVarDecl and instantiating the TypeConstraint
a second time.
Add support for Master and Critical directive in the OMPIRBuilder. Both make use of a new common interface for emitting inlined OMP regions called `emitInlinedRegion` which was added in this patch as well.
Also this patch modifies clang to use the new directives when `-fopenmp-enable-irbuilder` commandline option is passed.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D72304
bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
This patch depends on the splat analysis enhancement in D73549.
See the test with comment:
; Negative test - mismatched splat elements
...as the motivation for that first patch.
The motivating case for reassociating splatted ops is shown in PR42174:
https://bugs.llvm.org/show_bug.cgi?id=42174
In that example, a slight change in order-of-associative math results
in a big difference in IR and codegen. This patch gets all of the
unnecessary shuffles out of the way, but doesn't address the potential
scalarization (see D50992 or D73480 for that).
Differential Revision: https://reviews.llvm.org/D73703
We previously instantiated type-constraints of template type parameters along with the type parameter itself,
this caused problems when the type-constraints created by abbreviated templates refreneced other parameters
in the abbreviated templates.
When encountering a template type parameter with a type constraint, if it is implicit, delay instantiation of
the type-constraint until the function parameter which created the invented template type parameter is
instantiated.
These can be lowered to code sequences using CMPFP and CMPFPE which then get
selected to VCMP and VCMPE. The implementation isn't fully correct, as the chain
operand isn't handled correctly, but resolving that looks like it would involve
changes around FPSCR-handling instructions and how the FPSCR is modelled.
The fp-intrinsics test was already testing some of this but as the entire test
was being XFAILed it wasn't noticed. Un-XFAIL the test and instead leave the
cases where we aren't generating the right instruction sequences as FIXME.
Differential Revision: https://reviews.llvm.org/D73194
The patterns for converting `std.alloc` and `std.dealoc` can be configured to
use `llvm.alloca` instead of calling `malloc` and `free`. This configuration
has been only possible through a command-line flag, despite the presence of a
(misleading) parameter in the pass constructor. Use the parameter instead and
only initalize it from the command line flags if the pass is constructed from
the mlir-opt registration.
Summary:
ClusterManager is using a SmallPtrSet to store the objects in it. We always only add every object once so using a set is not necessary.
Furthermore having a set means that iterating over it is nondeterministic (at least with more than 16 objects in it), so the order in
which the destructors for the managed objects are called is currently also non-deterministic.
This just replaces the SmallPtrSet with a SmallVector.
Reviewers: labath, JDevlieghere
Reviewed By: labath
Subscribers: mgrang, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73871
Summary:
These hooks were originally introduced to support passes deriving the
StandardToLLVM conversion, in particular converting types from different
dialects to LLVM types in a single-step conversion. They are no longer in use
since the pass and conversion infrastructure has evolved sufficiently to make
defining new passes with exactly the same functionality simple through the use
of populate* functions, conversion targets and type converters. Remove the
hooks. Any users of this hooks can call the dialect conversion infrastructure
directly instead, which is likely to require less LoC than these hooks.
Differential Revision: https://reviews.llvm.org/D73795
Previously, if a debug line Prologue was created via
createBasicPrologue, its TotalLength field did not account for any
contents in the table itself. This change fixes this issue.
Reviewed by: probinson
Differential Revision: https://reviews.llvm.org/D73772
Summary:
In big-endian MVE, the simple vector load/store instructions (i.e.
both contiguous and non-widening) don't all store the bytes of a
register to memory in the same order: it matters whether you did a
VSTRB.8, VSTRH.16 or VSTRW.32. Put another way, the in-register
formats of different vector types relate to each other in a different
way from the in-memory formats.
So, if you want to 'bitcast' or 'reinterpret' one vector type as
another, you have to carefully specify which you mean: did you want to
reinterpret the //register// format of one type as that of the other,
or the //memory// format?
The ACLE `vreinterpretq` intrinsics are specified to reinterpret the
register format. But I had implemented them as LLVM IR bitcast, which
is specified for all types as a reinterpretation of the memory format.
So a `vreinterpretq` intrinsic, applied to values already in registers,
would code-generate incorrectly if compiled big-endian: instead of
emitting no code, it would emit a `vrev`.
To fix this, I've introduced a new IR intrinsic to perform a
register-format reinterpretation: `@llvm.arm.mve.vreinterpretq`. It's
implemented by a trivial isel pattern that expects the input in an
MQPR register, and just returns it unchanged.
In the clang codegen, I only emit this new intrinsic where it's
actually needed: I prefer a bitcast wherever it will have the right
effect, because LLVM understands bitcasts better. So we still generate
bitcasts in little-endian mode, and even in big-endian when you're
casting between two vector types with the same lane size.
For testing, I've moved all the codegen tests of vreinterpretq out
into their own file, so that they can have a different set of RUN
lines to check both big- and little-endian.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73786
Summary:
These instructions generate a vector of consecutive elements starting
from a given base value and incrementing by 1, 2, 4 or 8. The `wdup`
versions also wrap the values back to zero when they reach a given
limit value. The instruction updates the scalar base register so that
another use of the same instruction will continue the sequence from
where the previous one left off.
At the IR level, I've represented these instructions as a family of
target-specific intrinsics with two return values (the constructed
vector and the updated base). The user-facing ACLE API provides a set
of intrinsics that throw away the written-back base and another set
that receive it as a pointer so they can update it, plus the usual
predicated versions.
Because the intrinsics return two values (as do the underlying
instructions), the isel has to be done in C++.
This is the first family of MVE intrinsics that use the `imm_1248`
immediate type in the clang Tablegen framework, so naturally, I found
I'd given it the wrong C integer type. Also added some tests of the
check that the immediate has a legal value, because this is the first
time those particular checks have been exercised.
Finally, I also had to fix a bug in MveEmitter which failed an
assertion when I nested two `seq` nodes (the inner one used to extract
the two values from the pair returned by the IR intrinsic, and the
outer one put on by the predication multiclass).
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73357
Summary:
The unpredicated case of this is trivial: the clang codegen just makes
a vector splat of the input, and LLVM isel is already prepared to
handle that. For the predicated version, I've generated a `select`
between the same vector splat and the `inactive` input parameter, and
added new Tablegen isel rules to match that pattern into a predicated
`MVE_VDUP` instruction.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73356
Disable the red zone in the unit test allocator to fix the test errors in sanitizer builds.
The red zone changed the amount of allocated bytes which made the test fail as it
checked the number of allocated bytes of the allocator.
This fixes building for mingw with BUILD_SHARED_LIBS. In static builds,
the psapi dependency gets linked in transitively from Support, but
when linking Support dynamically, it's revealed that these components
also need linking against psapi.
Differential Revision: https://reviews.llvm.org/D73839
Summary:
It turns out that CUR_DIRECTION is just an internal placeholder, not an actual
valid encoded value.
Reviewers: gchatelet
Subscribers: tschuett, mstojanovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73343