Summary:
(1) Function descriptor on AIX
On AIX, a called routine may have 2 distinct symbols associated with it:
* A function descriptor (Name)
* A function entry point (.Name)
The descriptor structure on AIX is the same as those in the ELF V1 ABI:
* The address of the entry point of the function.
* The TOC base address for the function.
* The environment pointer.
The descriptor symbol uses the same name as the source level function in C.
The function entry point is analogous to the symbol we would generate for a
function in a non-descriptor-based ABI, except that it is renamed by
prepending a ".".
Which symbol gets referenced depends on the context:
* Taking the address of the function references the descriptor symbol.
* Calling the function references the entry point symbol.
(2) Speaking of implementation on AIX, for direct function call target, we
create proper MCSymbol SDNode(e.g . ".foo") while constructing SDAG to
replace original TargetGlobalAddress SDNode. Then down the path, we can
take advantage of this MCSymbol.
Patch by: Xiangling_L
Reviewed by: sfertile, hubert.reinterpretcast, jasonliu, syzaara
Differential Revision: https://reviews.llvm.org/D62532
llvm-svn: 362735
This patch is the first step towards ensuring MergeConsecutiveStores correctly handles non-temporal loads\stores:
1 - When merging load\stores we must ensure that they all have the same non-temporal flag. This is unlikely to occur, but can in strange cases where we're storing at the end of one page and the beginning of another.
2 - The merged load\store node must retain the non-temporal flag.
Differential Revision: https://reviews.llvm.org/D62910
llvm-svn: 362723
The ISD::STRICT_ nodes used to implement the constrained floating-point
intrinsics are currently never passed to the target back-end, which makes
it impossible to handle them correctly (e.g. mark instructions are depending
on a floating-point status and control register, or mark instructions as
possibly trapping).
This patch allows the target to use setOperationAction to switch the action
on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code
will stop converting the STRICT nodes to regular floating-point nodes, but
instead pass the STRICT nodes to the target using normal SelectionDAG
matching rules.
To avoid having the back-end duplicate all the floating-point instruction
patterns to handle both strict and non-strict variants, we make the MI
codegen explicitly aware of the floating-point exceptions by introducing
two new concepts:
- A new MCID flag "mayRaiseFPException" that the target should set on any
instruction that possibly can raise FP exception according to the
architecture definition.
- A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI
instruction resulting from expansion of any constrained FP intrinsic.
Any MI instruction that is *both* marked as mayRaiseFPException *and*
FPExcept then needs to be considered as raising exceptions by MI-level
codegen (e.g. scheduling).
Setting those two new flags is straightforward. The mayRaiseFPException
flag is simply set via TableGen by marking all relevant instruction
patterns in the .td files.
The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes
in the SelectionDAG, and gets inherited in the MachineSDNode nodes created
from it during instruction selection. The flag is then transfered to an
MIFlag when creating the MI from the MachineSDNode. This is handled just
like fast-math flags like no-nans are handled today.
This patch includes both common code changes required to implement the
new features, and the SystemZ implementation.
Reviewed By: andrew.w.kaylor
Differential Revision: https://reviews.llvm.org/D55506
llvm-svn: 362663
Most parts of LLVM don't care whether the byval type is derived from an
explicit Attribute or from the parameter's pointee type, so it makes
sense for the main access function to just return the right value.
The very few users who do care (only BitcodeReader so far) can find out
how it's specified by accessing the Attribute directly.
llvm-svn: 362642
Summary:
An argument that is return by a function but bit-casted before can still
be annotated as "returned". Make sure we do not crash for this case.
Reviewers: sunfish, stephenwlin, niravd, arsenm
Subscribers: wdng, hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59917
llvm-svn: 362546
This is a special case of a more general transform (not (sub Y, X)) -> (add X, ~Y). InstCombine knows the general form. I've restricted to the special case to fix the motivating case PR42118. I tried handling any case where Y was constant, but got some changes on some Mips tests that I couldn't quickly prove where beneficial.
Fixes PR42118
Differential Revision: https://reviews.llvm.org/D62828
llvm-svn: 362533
The proposal in D62498 showed that x86 would benefit from vector
store splitting, but that may conflict with the generic DAG
combiner's store merging transforms.
Add memory type to the existing TLI hook that enables the merging
transforms, so we can limit those changes to scalars only for x86.
llvm-svn: 362507
Summary:
This *might* be the last fold for `sink-addsub-of-const.ll`, but i'm not sure yet.
As far as i can tell, there are no regressions here (ignoring x86-32),
all changes are either good or neutral.
This, almost surprisingly to me, fixes the motivational tests (in `shift-amount-mod.ll`)
`@reg32_lshr_by_sub_from_negated` from [[ https://bugs.llvm.org/show_bug.cgi?id=41952 | PR41952 ]].
https://rise4fun.com/Alive/vMd3
Reviewers: RKSimon, t.p.northover, craig.topper, spatel, efriedma
Reviewed By: RKSimon
Subscribers: sdardis, javed.absar, arichardson, kristof.beyls, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62774
llvm-svn: 362488
As I mentioned on D61887 we don't get many hits on ComputeNumSignBits as we did on computeKnownBits.
The case we do get is interesting though - it allows us to use the 'ConditionalNegate' combine in combineLogicBlendIntoPBLENDV to remove a select.
It comes too late for SSE41 (BLENDV) cases, but SSE2 tests can hit it now. We should probably try to make use of this for SSE41+ targets as well - avoiding variable blends is usually a good idea. I'll investigate as a followup.
Differential Revision: https://reviews.llvm.org/D62777
llvm-svn: 362486
This opportunity is found from spec 2017 557.xz_r. And it is used by the sha encrypt/decrypt. See sha-2/sha512.c
static void store64(u64 x, unsigned char* y)
{
for(int i = 0; i != 8; ++i)
y[i] = (x >> ((7-i) * 8)) & 255;
}
static u64 load64(const unsigned char* y)
{
u64 res = 0;
for(int i = 0; i != 8; ++i)
res |= (u64)(y[i]) << ((7-i) * 8);
return res;
}
The load64 has been implemented by https://reviews.llvm.org/D26149
This patch is trying to implement the store pattern.
Match a pattern where a wide type scalar value is stored by several narrow
stores. Fold it into a single store or a BSWAP and a store if the targets
supports it.
Assuming little endian target:
i8 *p = ...
i32 val = ...
p[0] = (val >> 0) & 0xFF;
p[1] = (val >> 8) & 0xFF;
p[2] = (val >> 16) & 0xFF;
p[3] = (val >> 24) & 0xFF;
>
*((i32)p) = val;
i8 *p = ...
i32 val = ...
p[0] = (val >> 24) & 0xFF;
p[1] = (val >> 16) & 0xFF;
p[2] = (val >> 8) & 0xFF;
p[3] = (val >> 0) & 0xFF;
>
*((i32)p) = BSWAP(val);
Differential Revision: https://reviews.llvm.org/D61843
llvm-svn: 362472
Summary: This change facilitates propagating fmf which was placed on setcc from fcmp through folds with selects so that back ends can model this path for arithmetic folds on selects in SDAG.
Reviewers: qcolombet, spatel
Reviewed By: qcolombet
Subscribers: nemanjai, jsji
Differential Revision: https://reviews.llvm.org/D62552
llvm-svn: 362439
We were missing this fold in the DAG, which I've copied directly from llvm::ConstantFoldCastInstruction
Differential Revision: https://reviews.llvm.org/D62807
llvm-svn: 362397
If we hit the limit, we do expand the outstanding tokenfactors.
Otherwise, we might drop nodes with users in the unexpanded
tokenfactors. This fixes the crashes reported by Jordan Rupprecht.
Reviewers: niravd, spatel, craig.topper, rupprecht
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D62633
llvm-svn: 362350
Move this combine from x86 into generic DAGCombine, which currently only manages cases where the bitcast is between types of the same scalarsize.
Differential Revision: https://reviews.llvm.org/D59188
llvm-svn: 362324
Add (opt-in) support for implicit truncation to isConstOrConstSplat, which allows us to match truncated 'all ones' cases in isBitwiseNot.
PR41020 compares against using ISD::isBuildVectorAllOnes() instead, but that predicate silently accepts any UNDEF elements in the build vector which might not be what we want in isBitwiseNot - so I've added an opt-in 'AllowUndefs' flag that is set to false by default but will allow us to enable it on individual cases where its safe.
Differential Revision: https://reviews.llvm.org/D62783
llvm-svn: 362323
The results of the dyn_casts were immediately dereferenced on the next line
so they had better not be null.
I don't think there's any way for these dyn_casts to fail, so use a cast
of adding null check.
llvm-svn: 362315
Just copy all of the operands except the chain and call MorphNode on that.
This removes the IsUnary and IsTernary flags.
Also always get the result type from the result type of the original
nodes. Previously we got it from the operand except for two nodes
where that didn't work.
llvm-svn: 362269
[FPEnv] Added a special UnrollVectorOp method to deal with the chain on StrictFP opcodes
This change creates UnrollVectorOp_StrictFP. The purpose of this is to address a failure that consistently occurs when calling StrictFP functions on vectors whose number of elements is 3 + 2n on most platforms, such as PowerPC or SystemZ. The old UnrollVectorOp method does not expect that the vector that it will unroll will have a chain, so it has an assert that prevents it from running if this is the case. This new StrictFP version of the method deals with the chain while unrolling the vector. With this new function in place during vector widending, llc can run vector-constrained-fp-intrinsics.ll for SystemZ successfully.
Submitted by: Drew Wock <drew.wock@sas.com>
Reviewed by: Cameron McInally, Kevin P. Neal
Approved by: Cameron McInally
Differential Revision: https://reviews.llvm.org/D62546
llvm-svn: 362241
I don't have a test case for these, but there is a test case for D62266
where, even after all the constant-folding patches, we still end up
with endless combine loop. Which makes sense, since we don't constant
fold for opaque constants.
llvm-svn: 362156
Summary:
Only vector tests are being affected here,
since subtraction by scalar constant is rewritten
as addition by negated constant.
No surprising test changes.
https://rise4fun.com/Alive/pbT
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62257
llvm-svn: 362146
Summary:
Again only vectors affected. Frustrating. Let me take a look into that..
https://rise4fun.com/Alive/AAq
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, JDevlieghere, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62294
llvm-svn: 362145
Summary:
This prevents regressions in next patch,
and somewhat recovers from the regression to AMDGPU test in D62223.
It is indeed not great that we leave vector decrement,
don't transform it into vector add all-ones..
https://rise4fun.com/Alive/ZRl
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: RKSimon, craig.topper, spatel, arsenm
Reviewed By: RKSimon, arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62263
llvm-svn: 362144
Summary:
Direct sibling of D62223 patch.
While i don't have a direct motivational pattern for this,
it would seem to make sense to handle both patterns (or none),
for symmetry?
The aarch64 changes look neutral;
sparc and systemz look like improvement (one less instruction each);
x86 changes - 32bit case improves, 64bit case shows that LEA no longer
gets constructed, which may be because that whole test is `-mattr=+slow-lea,+slow-3ops-lea`
https://rise4fun.com/Alive/ffh
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: RKSimon, craig.topper, spatel, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, jyknight, javed.absar, kristof.beyls, fedor.sergeev, jrtc27, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62252
llvm-svn: 362143
Summary:
The main motivation is shown by all these `neg` instructions that are now created.
In particular, the `@reg32_lshr_by_negated_unfolded_sub_b` test.
AArch64 test changes all look good (`neg` created), or neutral.
X86 changes look neutral (vectors), or good (`neg` / `xor eax, eax` created).
I'm not sure about `X86/ragreedy-hoist-spill.ll`, it looks like the spill
is now hoisted into preheader (which should still be good?),
2 4-byte reloads become 1 8-byte reload, and are elsewhere,
but i'm not sure how that affects that loop.
I'm unable to interpret AMDGPU change, looks neutral-ish?
This is hopefully a step towards solving [[ https://bugs.llvm.org/show_bug.cgi?id=41952 | PR41952 ]].
https://rise4fun.com/Alive/pkdq (we are missing more patterns, i'll submit them later)
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: craig.topper, RKSimon, spatel, arsenm
Reviewed By: RKSimon
Subscribers: bjope, qcolombet, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62223
llvm-svn: 362142
Summary:
Direct sibling of D62662, the root cause of the endless combine loop in D62257
https://rise4fun.com/Alive/d3W
Reviewers: RKSimon, craig.topper, spatel, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62664
llvm-svn: 362133
Summary:
No tests change, and i'm not sure how to test this, but it's better safe than sorry.
Reviewers: spatel, RKSimon, craig.topper, t.p.northover
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62663
llvm-svn: 362132
Summary:
This was the root cause of the endless combine loop in D62257
https://rise4fun.com/Alive/d3W
Reviewers: RKSimon, spatel, craig.topper, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62662
llvm-svn: 362131
Summary: No tests change, and i'm not sure how to test this, but it's better safe than sorry.
Reviewers: spatel, RKSimon, craig.topper, t.p.northover
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62661
llvm-svn: 362130
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
The original commit did not remap byval types when linking modules, which broke
LTO. This version fixes that.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362128
This change creates UnrollVectorOp_StrictFP. The purpose of this is to address a failure that consistently occurs when calling StrictFP functions on vectors whose number of elements is 3 + 2n on most platforms, such as PowerPC or SystemZ. The old UnrollVectorOp method does not expect that the vector that it will unroll will have a chain, so it has an assert that prevents it from running if this is the case. This new StrictFP version of the method deals with the chain while unrolling the vector. With this new function in place during vector widending, llc can run vector-constrained-fp-intrinsics.ll for SystemZ successfully.
Submitted by: Drew Wock <drew.wock@sas.com>
Reviewed by: Cameron McInally, Kevin P. Neal
Approved by: Cameron McInally
Differential Revision: http://reviews.llvm.org/D62546
llvm-svn: 362112
I was looking into an endless combine loop the uncommitted follow-up patch
was causing, and it appears even these patches can exibit such an
endless loop. The root cause is that we try to hoist one binop (add/sub) with
constant operand, and if we get two such binops both of which are
eligible for this hoisting, we get stuck.
Some cases may highlight missing constant-folds.
Reverts r361871,r361872,r361873,r361874.
llvm-svn: 362109
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362012