Reverts the code changes from r234675 but keeps the test case.
We were already maintaining a DenseMap of globals with dynamic
initializers anyway.
Fixes the test case from PR23234.
llvm-svn: 234961
Utilizing IMAGEREL relocations for synthetic IR constructs isn't
valuable, just clutter. While we are here, simplify HandlerType names
by making the numeric value for the 'adjective' part of the mangled name
instead of appending '.const', etc. The old scheme made for very long
global names and leads to wordy things like '.std_bad_alloc'
llvm-svn: 233503
The HandlerMap describes, to the runtime, what sort of catches surround
the try. In principle, this structure has to be emitted by the backend
because only it knows the layout of the stack (the runtime needs to know
where on the stack the destination of a copy lives, etc.) but there is
some C++ specific information that the backend can't reason about.
Stick this information in special LLVM globals with the relevant
"const", "volatile", "reference" info mangled into the name.
llvm-svn: 232538
This patch introduces the -fsanitize=cfi-vptr flag, which enables a control
flow integrity scheme that checks that virtual calls take place using a vptr of
the correct dynamic type. More details in the new docs/ControlFlowIntegrity.rst
file.
It also introduces the -fsanitize=cfi flag, which is currently a synonym for
-fsanitize=cfi-vptr, but will eventually cover all CFI checks implemented
in Clang.
Differential Revision: http://reviews.llvm.org/D7424
llvm-svn: 230055
In ItaniumCXXABI::EmitCXXDestructors we first emit the base destructor
and then try to emit the complete one as an alias.
If in the base ends up calling the complete destructor, the GD for the
complete will be in the list of deferred decl by the time we replace
it with an alias and delete the original GV.
llvm-svn: 226896
Sema calls HandleVTable() with a bool parameter which is then threaded through
three layers. The only effect of this bool is an early return at the last
layer.
Instead, remove this parameter and call HandleVTable() only if the bool is
true. No intended behavior change.
llvm-svn: 226096
Their linkage can change if they are later explicitly instantiated. We would
previously emit such functions eagerly (as opposed to lazily on first use) if
they have a 'dllexport' or 'used' attribute, and fail an assert when hitting the
explicit instantiation.
This is achieved by replacing the old CodeGenModule::MayDeferGeneration() method
with two new ones: MustBeEmitted() and MayBeEmittedEagerly().
Differential Revision: http://reviews.llvm.org/D6674
llvm-svn: 225570
Summary:
In a JIT context it is useful to be able to access the GlobalCtors
and especially clear them once they have been emitted and called.
This adds a public method to be able to access the list.
Subscribers: yaron.keren, cfe-commits
Differential Revision: http://reviews.llvm.org/D6790
llvm-svn: 224982
ARM ABI specifies that all the libcalls use soft FP ABI
(even hard FP binaries). These days clang emits _mulsc3 / _muldc3
calls with default (C) calling convention which would be translated
into AAPCS_VFP LLVM calling and thus the result of complex
multiplication will be bogus.
Introduce a way for a target to specify explicitly calling
convention for libcalls. Right now this is temporary correctness
fix. Ultimately, we'll end with intrinsic for complex
multiplication and all calling convention decisions for libcalls
will be put into backend.
llvm-svn: 223123
For all threadprivate variables which have constructor/destructor emit call to void __kmpc_threadprivate_register(ident_t * <Current Location>, void *<Original Global Addr>, kmpc_ctor <Constructor>, kmpc_cctor NULL, kmpc_dtor <Destructor>);
In expressions all references to such variables are replaced by calls to void *__kmpc_threadprivate_cached(ident_t *<Current Location>, kmp_int32 <Current Thread Id>, void *<Original Global Addr>, size_t <Size of Data>, void ***<Pointer to autogenerated cache – array of private copies of threadprivate variable>);
Test test/OpenMP/threadprivate_codegen.cpp checks that codegen is correct. Also it checks that codegen is correct after serialization/deserialization and one of passes verifies debug info.
Differential Revision: http://reviews.llvm.org/D4002
llvm-svn: 221663
This commit changes the way we blacklist global variables in ASan.
Now the global is excluded from instrumentation (either regular
bounds checking, or initialization-order checking) if:
1) Global is explicitly blacklisted by its mangled name.
This part is left unchanged.
2) SourceLocation of a global is in blacklisted source file.
This changes the old behavior, where instead of looking at the
SourceLocation of a variable we simply considered llvm::Module
identifier. This was wrong, as identifier may not correspond to
the file name, and we incorrectly disabled instrumentation
for globals coming from #include'd files.
3) Global is blacklisted by type.
Now we build the type of a global variable using Clang machinery
(QualType::getAsString()), instead of llvm::StructType::getName().
After this commit, the active users of ASan blacklist files
may have to revisit them (this is a backwards-incompatible change).
llvm-svn: 220097
This commit changes the way we blacklist functions in ASan, TSan,
MSan and UBSan. We used to treat function as "blacklisted"
and turned off instrumentation in it in two cases:
1) Function is explicitly blacklisted by its mangled name.
This part is not changed.
2) Function is located in llvm::Module, whose identifier is
contained in the list of blacklisted sources. This is completely
wrong, as llvm::Module may not correspond to the actual source
file function is defined in. Also, function can be defined in
a header, in which case user had to blacklist the .cpp file
this header was #include'd into, not the header itself.
Such functions could cause other problems - for instance, if the
header was included in multiple source files, compiled
separately and linked into a single executable, we could end up
with both instrumented and non-instrumented version of the same
function participating in the same link.
After this change we will make blacklisting decision based on
the SourceLocation of a function definition. If a function is
not explicitly defined in the source file, (for example, the
function is compiler-generated and responsible for
initialization/destruction of a global variable), then it will
be blacklisted if the corresponding global variable is defined
in blacklisted source file, and will be instrumented otherwise.
After this commit, the active users of blacklist files may have
to revisit them. This is a backwards-incompatible change, but
I don't think it's possible or makes sense to support the
old incorrect behavior.
I plan to make similar change for blacklisting GlobalVariables
(which is ASan-specific).
llvm-svn: 219997
CodeGen wouldn't mark the aliasee as thread_local if the aliasee was a
tentative definition.
Even if the definition was already emitted, it would never mark the
alias as thread_local.
This fixes PR21288.
llvm-svn: 219859
Soon we'll need to have access to blacklist before the CodeGen
phase (see http://reviews.llvm.org/D5687), so parse and construct
the blacklist earlier.
llvm-svn: 219857
This change moves SanitizerBlacklist.h from lib/CodeGen
to public Clang headers in include/clang/Basic. SanitizerBlacklist
is currently only used in CodeGen to decide which functions/modules
should be instrumented, but this will soon change as ASan will
optionally modify class layouts during AST construction
(http://reviews.llvm.org/D5687). We need blacklist machinery
to be available at this point.
llvm-svn: 219840
Assertion failed: "Computed __func__ length differs from type!"
Reworked PredefinedExpr representation with internal StringLiteral field for function declaration.
Differential Revision: http://reviews.llvm.org/D5365
llvm-svn: 219393
Summary:
Previously CodeGen assumed that static locals were emitted before they
could be accessed, which is true for automatic storage duration locals.
However, it is possible to have CodeGen emit a nested function that uses
a static local before emitting the function that defines the static
local, breaking that assumption.
Fix it by creating the static local upon access and ensuring that the
deferred function body gets emitted. We may not be able to emit the
initializer properly from outside the function body, so don't try.
Fixes PR18020. See also previous attempts to fix static locals in
PR6769 and PR7101.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4787
llvm-svn: 219265
Summary:
This add support for the C++11 feature, thread_local global variables.
The ABI Clang implements is an improvement of the MSVC ABI. Sadly,
further improvements could be made but not without sacrificing ABI
compatibility.
The feature is implemented as follows:
- All thread_local initialization routines are pointed to from the
.CRT$XDU section.
- All non-weak thread_local variables have their initialization routines
call from a single function instead of getting their own .CRT$XDU
section entry. This is done to open up optimization opportunities to
the compiler.
- All weak thread_local variables have their own .CRT$XDU section entry.
This entry is in a COMDAT with the global variable it is initializing;
this ensures that we will initialize the global exactly once.
- Destructors are registered in the initialization function using
__tlregdtor.
Differential Revision: http://reviews.llvm.org/D5597
llvm-svn: 219074
On further investigation, COMDATs should work with .ctors, and the issue
I was hitting probably reproduces with .init_array.
This reverts commit r218287.
llvm-svn: 218313
In particular, pre-.init_array ELF uses the .ctors section mechanism.
MinGW COFF also uses .ctors, now that I think about it. Therefore,
restrict this optimization to the two platforms that are currently known
to work: ELF with .init_array and COFF with .CRT$XCU.
llvm-svn: 218287
This patch makes sure that the dllexport attribute is transferred to the alias when such alias is created. It only affects the Itanium ABI because for the MSVC ABI a workaround is in place to not generate aliases of dllexport ctors/dtors.
A new CodeGenModule function is provided, CodeGenModule::setAliasAttributes, to factor the code for transferring attributes to aliases.
llvm-svn: 218159
The field is defined as:
If the third field is present, non-null, and points to a global variable or function, the initializer function will only run if the associated data from the current module is not discarded.
And without COMDATs we can't implement that.
llvm-svn: 218097
Clang can already handle
-------------------------------------------
struct S {
static const int x;
};
template<typename T> struct U {
static const int k;
};
template<typename T> const int U<T>::k = T::x;
const int S::x = 42;
extern const int *f();
const int *g() { return &U<S>::k; }
int main() {
return *f() + U<S>::k;
}
const int *f() { return &U<S>::k; }
-------------------------------------------
since r217264 which puts the .inint_array section in the same COMDAT
as the variable.
This patch allows the linker to more easily delete some dead code and data by
putting the guard variable and init function in the same COMDAT.
llvm-svn: 218089
There are situations when clang knows that the C1 and C2 constructors
or the D1 and D2 destructors are identical. We already optimize some
of these cases, but cannot optimize it when the GlobalValue is
weak_odr.
The problem with weak_odr is that an old TU seeing the same code will
have a C1 and a C2 comdat with the corresponding symbols. We cannot
suddenly start putting the C2 symbol in the C1 comdat as we cannot
guarantee that the linker will not pick a .o with only C1 in it.
The solution implemented by GCC is to expand the ABI to have a comdat
whose name uses a C5/D5 suffix and always has both symbols. That is
what this patch implements.
llvm-svn: 217874
There were code paths that are duplicated for constructors and destructors just
because we have both CXXCtorType and CXXDtorsTypes.
This patch introduces an unified enum and reduces code deplication a bit.
llvm-svn: 217383
This patch adds the '-fcoverage-mapping' option which
allows clang to generate the coverage mapping information
that can be used to provide code coverage analysis using
the execution counts obtained from the instrumentation
based profiling (-fprofile-instr-generate).
llvm-svn: 214752
It is responsible for generating metadata consumed by sanitizer instrumentation
passes in the backend. Move several methods from CodeGenModule to SanitizerMetadata.
For now the class is stateless, but soon it won't be the case.
Instead of creating globals providing source-level information to ASan, we will create
metadata nodes/strings which will be turned into actual global variables in the
backend (if needed).
No functionality change.
llvm-svn: 214564
Summary:
This pragma is very rare. We could *hypothetically* lower some uses of
it down to @llvm.global_ctors, but given that GlobalOpt isn't able to
optimize prioritized global ctors today, there's really no point.
If we wanted to do this in the future, I would check if the section used
in the pragma started with ".CRT$XC" and had up to two characters after
it. Those two characters could form the 16-bit initialization priority
that we support in @llvm.global_ctors. We would have to teach LLVM to
lower prioritized global ctors on COFF as well.
This should let us compile some silly uses of this pragma in WebKit /
Blink.
Reviewers: rsmith, majnemer
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D4549
llvm-svn: 213593
Summary:
This change adds description of globals created by UBSan
instrumentation (UBSan handlers, type descriptors, filenames) to
llvm.asan.globals metadata, effectively "blacklisting" them. This can
dramatically decrease the data section in binaries built with UBSan+ASan,
as UBSan tends to create a lot of handlers, and ASan instrumentation
increases the global size to at least 64 bytes.
Test Plan: clang regression test suite
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits, byoungyoung, kcc
Differential Revision: http://reviews.llvm.org/D4575
llvm-svn: 213392
Currently ASan instrumentation pass creates a string with global name
for each instrumented global (to include global names in the error report). Global
name is already mangled at this point, and we may not be able to demangle it
at runtime (e.g. there is no __cxa_demangle on Android).
Instead, create a string with fully qualified global name in Clang, and pass it
to ASan instrumentation pass in llvm.asan.globals metadata. If there is no metadata
for some global, ASan will use the original algorithm.
This fixes https://code.google.com/p/address-sanitizer/issues/detail?id=264.
llvm-svn: 212872
Turn llvm::SpecialCaseList into a simple class that parses text files in
a specified format and knows nothing about LLVM IR. Move this class into
LLVMSupport library. Implement two users of this class:
* DFSanABIList in DFSan instrumentation pass.
* SanitizerBlacklist in Clang CodeGen library.
The latter will be modified to use actual source-level information from frontend
(source file names) instead of unstable LLVM IR things (LLVM Module identifier).
Remove dependency edge from ClangCodeGen/ClangDriver to LLVMTransformUtils.
No functionality change.
llvm-svn: 212643
Now CodeGenFunction is responsible for looking at sanitizer blacklist
(in CodeGenFunction::StartFunction) and turning off instrumentation,
if necessary.
No functionality change.
llvm-svn: 212501