This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
This patch applies only to the new pass manager.
Currently, when MSSA Analysis is available, and pass to each loop pass, it will be preserved by that loop pass.
Hence, mark the analysis preserved based on that condition, vs the current `EnableMSSALoopDependency`. This leaves the global flag to affect only the entry point in the loop pass manager (in FunctionToLoopPassAdaptor).
llvm-svn: 369181
Summary:
The method `getLoopPassPreservedAnalyses` should not mark MemorySSA as
preserved, because it's being called in a lot of passes that do not
preserve MemorySSA.
Instead, mark the MemorySSA analysis as preserved by each pass that does
preserve it.
These changes only affect the new pass mananger.
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, Prazek, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62536
llvm-svn: 363091
Summary:
MemorySSA is not properly updated in LoopSimplifyCFG after recent changes. Use SplitBlock utility to resolve that and clear all updates once handleDeadExits is finished.
All updates that follow are removal of edges which are safe to handle via the removeEdge() API.
Also, deleting dead blocks is done correctly as is, i.e. delete from MemorySSA before updating the CFG and DT.
Reviewers: mkazantsev, rtereshin
Subscribers: sanjoy, jlebar, Prazek, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58524
llvm-svn: 354613
We are planning to be able to delete the current loop in LoopSimplifyCFG
in the future. Add API to notify the loop pass manager that it happened.
llvm-svn: 354314
Known underlying bugs have been fixed, intensive fuzz testing did not
find any new problems. Re-enabling by default. Feel free to revert if
it causes any functional failures.
llvm-svn: 353911
The function `LI.erase` has some invariants that need to be preserved when it
tries to remove a loop which is not the top-level loop. In particular, it
requires loop's preheader to be strictly in loop's parent. Our current logic
of deletion of dead blocks may erase the information about preheader before we
handle the loop, and therefore we may hit this assertion.
This patch changes the logic of loop deletion: we make them top-level loops
before we actually erase them. This allows us to trigger the simple branch of
`erase` logic which just detatches blocks from the loop and does not try to do
some complex stuff that need this invariant.
Thanks to @uabelho for reporting this!
Differential Revision: https://reviews.llvm.org/D57221
Reviewed By: fedor.sergeev
llvm-svn: 353813
Utility function that we use for blocks deletion always unconditionally removes
one-input Phis. In LoopSimplifyCFG, it can lead to breach of LCSSA form.
This patch alters this function to keep them if needed.
Differential Revision: https://reviews.llvm.org/D57231
Reviewed By: fedor.sergeev
llvm-svn: 353803
`insert/deleteEdge` methods in DTU can make updates incorrectly in some cases
(see https://bugs.llvm.org/show_bug.cgi?id=40528), and it is recommended to
use `applyUpdates` methods instead when it is needed to make a mass update in CFG.
Differential Revision: https://reviews.llvm.org/D57316
Reviewed By: kuhar
llvm-svn: 353502
DomTreeUpdater depends on headers from Analysis, but is in IR. This is a
layering violation since Analysis depends on IR. Relocate this code from IR
to Analysis to fix the layering violation.
llvm-svn: 353265
2nd part of D57095 with the same reason, just in another place. We never
fold branches that are not immediately in the current loop, but this check
is missing in `IsEdgeLive` As result, it may think that the edge in subloop is
dead while it's live. It's a pessimization in the current stance.
Differential Revision: https://reviews.llvm.org/D57147
Reviewed By: rupprecht
llvm-svn: 352170
When we choose whether or not we should mark block as dead, we have an
inconsistent logic in markup of live blocks.
- We take candidate IF its terminator branches on constant AND it is immediately
in current loop;
- We mark successor live IF its terminator doesn't branch by constant OR it branches
by constant and the successor is its always taken block.
What we are missing here is that when the terminator branches on a constant but is
not taken as a candidate because is it not immediately in the current loop, we will
mark only one (always taken) successor as live. Therefore, we do NOT do the actual
folding but may NOT mark one of the successors as live. So the result of markup is
wrong in this case, and we may then hit various asserts.
Thanks Jordan Rupprech for reporting this!
Differential Revision: https://reviews.llvm.org/D57095
Reviewed By: rupprecht
llvm-svn: 352024
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
During the transforms in LoopSimplifyCFG, when we remove a dead exiting edge, the
parent loop may stop being reachable from the child loop, and therefore they become
siblings. If the former child loop had uses of some values from its former parent loop,
now such uses will require LCSSA Phis, even if they weren't needed before. So we must
form LCSSA for all loops that stopped being ancestors of the current loop in this case.
Differential Revision: https://reviews.llvm.org/D56144
Reviewed By: fedor.sergeev
llvm-svn: 351434
Function `DeleteDeadBlock` requires that all predecessors of a block
being deleted have already been deleted, with the exception of a
single-block loop. When we use it for removal of dead subloops that
contain more than one block, we may not fulfull this requirement and
fail an assertion.
This patch replaces invocation of `DeleteDeadBlock` with a generalized
version `DeleteDeadBlocks` that is able to deal with multiple dead blocks,
even if they contain some cycles.
Differential Revision: https://reviews.llvm.org/D56121
Reviewed By: fedor.sergeev
llvm-svn: 351433
Deletion of dead blocks in arbitrary order may lead to failure
of assertion in `DeleteDeadBlock` that requires that we have
deleted all predecessors before we can delete the current block.
We should instead delete them in RPO order.
llvm-svn: 350116
This patch teaches LoopSimplifyCFG to remove dead exiting edges
from loops.
Differential Revision: https://reviews.llvm.org/D54025
Reviewed By: fedor.sergeev
llvm-svn: 350049
The current algorithm that collects live/dead/inloop blocks relies on some invariants
related to RPO and PO traversals. In particular, the important fact it requires is that
the only loop's latch is the first block in PO traversal. It also relies on fact that during
RPO we visit all prececessors of a block before we visit this block (backedges ignored).
If a loop has irreducible non-loop cycle inside, both these assumptions may break.
This patch adds detection for this situation and prohibits the terminator folding
for loops with irreducible CFG.
We can in theory support this later, for this some algorithmic changes are needed.
Besides, irreducible CFG is not a frequent situation and we can just don't bother.
Thanks @uabelho for finding this!
Differential Revision: https://reviews.llvm.org/D55357
Reviewed By: skatkov
llvm-svn: 348567
This reverts commit r348457.
The original commit causes clang to crash when doing an instrumented
build with a new pass manager. Reverting to unbreak our integrate.
llvm-svn: 348484
This patch teaches LoopSimplifyCFG to delete loop blocks that have
become unreachable after terminator folding has been done.
Differential Revision: https://reviews.llvm.org/D54023
Reviewed By: anna
llvm-svn: 348457
Terminator folding transform lacks MemorySSA update for memory Phis,
while they exist within MemorySSA analysis. They need exactly the same
type of updates as regular Phis. Failing to update them properly ends up
with inconsistent MemorySSA and manifests in various assertion failures.
This patch adds Memory Phi updates to this transform.
Thanks to @jonpa for finding this!
Differential Revision: https://reviews.llvm.org/D55050
Reviewed By: asbirlea
llvm-svn: 347979
It fixes a bug that doesn't update Phi inputs of the only live successor that
is in the list of block's successors more than once.
Thanks @uabelho for finding this.
Differential Revision: https://reviews.llvm.org/D54849
Reviewed By: anna
llvm-svn: 347640
When removing edges, we also update Phi inputs and may end up removing
a Phi if it has only one input. We should not do it for edges that leave the current
loop because these Phis are LCSSA Phis and need to be preserved.
Thanks @dmgreen for finding this!
Differential Revision: https://reviews.llvm.org/D54841
llvm-svn: 347484
The initial version of patch lacked Phi nodes updates in destinations of removed
edges. This version contains this update and tests on this situation.
Differential Revision: https://reviews.llvm.org/D54021
llvm-svn: 347289