Instead of using a fake call and metadata to temporarily represent a probed
static alloca, use a pseudo instruction.
This is inspired by the SystemZ approach proposed in https://reviews.llvm.org/D78717.
Differential Revision: https://reviews.llvm.org/D80641
- test both 32 and 64 bit version
- probe the tail in dynamic-alloca
- generate more concise code
Differential Revision: https://reviews.llvm.org/D79482
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
like .cfi_restore"
Insert .cfi_offset/.cfi_register when IncomingCSRSaved of current block
is larger than OutgoingCSRSaved of its previous block.
Original commit message:
https://reviews.llvm.org/D42848 only handled CFA related cfi directives but
didn't handle CSR related cfi. The patch adds the CSR part. Basically it reuses
the framework created in D42848. For each basicblock, the patch tracks which
CSR set have been saved at its CFG predecessors's exits, and compare the CSR
set with the set at its previous basicblock's exit (The previous block is the
block laid before the current block). If the saved CSR set at its previous
basicblock's exit is larger, .cfi_restore will be inserted.
The patch also generates proper .cfi_restore in epilogue to make sure the
saved CSR set is consistent for the incoming edges of each block.
Differential Revision: https://reviews.llvm.org/D74303
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
This reverts commit 4e0fe038f4. Re-lands
65b21282c7.
After landing 5ff5ddd0ad to add int3 into
trailing unreachable blocks, we can now remove these extra stack
adjustments without confusing the Win64 unwinder. See
https://llvm.org/45064#c4 or X86AvoidTrailingCall.cpp for a full
explanation.
Fixes PR45064.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: dylanmckay, sdardis, nemanjai, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76551
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jholewinski, arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76348
In 172eee9c, we tried to avoid these by modelling the callee as
internally resetting the stack pointer.
However, for the majority of functions with reserved stack frames, this
would lead LLVM to emit extra SP adjustments to undo the callee's
internal adjustment. This lead us to fix the problem further on down the
pipeline in eliminateCallFramePseudoInstr. In 5b79e603d3, I added
use a heuristic to try to detect when the adjustment would be
unreachable.
This heuristic is imperfect, and when exception handling is involved, it
fails to fire. The new test is an example of this. Simply throwing an
exception with an active cleanup emits dead SP adjustments after the
throw. Not only are they dead, but if they were executed, they would be
incorrect, so they are confusing.
This change essentially reverts 172eee9c and makes the 5b79e603d3
heuristic responsible for preventing unreachable stack adjustments. This
means we may emit unreachable stack adjustments for functions using EH
with unreserved call frames, but that is not very many these days. Back
in 2016 when this change was added, we were focused on 32-bit, which we
observed to have fewer reserved frames.
Fixes PR45064
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D75712
https://reviews.llvm.org/D42848 only handled CFA related cfi directives but
didn't handle CSR related cfi. The patch adds the CSR part. Basically it reuses
the framework created in D42848. For each basicblock, the patch tracks which
CSR set have been saved at its CFG predecessors's exits, and compare the CSR
set with the set at its previous basicblock's exit (The previous block is the
block laid before the current block). If the saved CSR set at its previous
basicblock's exit is larger, .cfi_restore will be inserted.
The patch also generates proper .cfi_restore in epilogue to make sure the
saved CSR set is consistent for the incoming edges of each block.
Differential Revision: https://reviews.llvm.org/D74303
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with proper LiveIn
declaration, better option handling and more portable testing.
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with better option
handling and more portable testing
Differential Revision: https://reviews.llvm.org/D68720
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
This a recommit of 39f50da2a3 with correct option
flags set.
Differential Revision: https://reviews.llvm.org/D68720
This reverts commit 39f50da2a3.
The -fstack-clash-protection is being passed to the linker too, which
is not intended.
Reverting and fixing that in a later commit.
Implement protection against the stack clash attack [0] through inline stack
probing.
Probe stack allocation every PAGE_SIZE during frame lowering or dynamic
allocation to make sure the page guard, if any, is touched when touching the
stack, in a similar manner to GCC[1].
This extends the existing `probe-stack' mechanism with a special value `inline-asm'.
Technically the former uses function call before stack allocation while this
patch provides inlined stack probes and chunk allocation.
Only implemented for x86.
[0] https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
[1] https://gcc.gnu.org/ml/gcc-patches/2017-07/msg00556.html
Differential Revision: https://reviews.llvm.org/D68720
The CATCHPAD node mostly existed to be selected into the EH_RESTORE
instruction, which sets the frame back up when 32-bit Windows exceptions
return to the parent function. However, creating this MachineInstr early
increases the risk that other passes will come along and insert
instructions that use the stack before ESP and EBP are restored. That
happened in PR44697.
Instead of representing these in the instruction stream early, delay it
until PEI. Mark the blocks where this needs to happen as EHPads, but not
funclet entry blocks. Passes after PEI have to be careful not to hoist
instructions that can use stack across frame setup instructions, so this
should be relatively reliable.
Fixes PR44697
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D73752
Summary: This is a bug fix for further issues in PR43585.
Reviewers: rnk, RKSimon, craig.topper, andrew.w.kaylor
Subscribers: hiraditya, llvm-commits, annita.zhang
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70224
This adds a flag to LLVM and clang to always generate a .debug_frame
section, even if other debug information is not being generated. In
situations where .eh_frame would normally be emitted, both .debug_frame
and .eh_frame will be used.
Differential Revision: https://reviews.llvm.org/D67216
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68993
llvm-svn: 375084
When the target option GuaranteedTailCallOpt is specified, calls with
the fastcc calling convention will be transformed into tail calls if
they are in tail position. This diff adds a new calling convention,
tailcc, currently supported only on X86, which behaves the same way as
fastcc, except that the GuaranteedTailCallOpt flag does not need to
enabled in order to enable tail call optimization.
Patch by Dwight Guth <dwight.guth@runtimeverification.com>!
Reviewed By: lebedev.ri, paquette, rnk
Differential Revision: https://reviews.llvm.org/D67855
llvm-svn: 373976
This reverts r370525 (git commit 0bb1630685)
Also reverts r370543 (git commit 185ddc08ee)
The approach I took only works for functions marked `noreturn`. In
general, a call that is not known to be noreturn may be followed by
unreachable for other reasons. For example, there could be multiple call
sites to a function that throws sometimes, and at some call sites, it is
known to always throw, so it is followed by unreachable. We need to
insert an `int3` in these cases to pacify the Windows unwinder.
I think this probably deserves its own standalone, Win64-only fixup pass
that runs after block placement. Implementing that will take some time,
so let's revert to TrapUnreachable in the mean time.
llvm-svn: 370829
Users have complained llvm.trap produce two ud2 instructions on Win64,
one for the trap, and one for unreachable. This change fixes that.
TrapUnreachable was added and enabled for Win64 in r206684 (April 2014)
to avoid poorly understood issues with the Windows unwinder.
There seem to be two major things in play:
- the unwinder
- C++ EH, _CxxFrameHandler3 & co
The unwinder disassembles forward from the return address to scan for
epilogues. Inserting a ud2 had the effect of stopping the unwinder, and
ensuring that it ran the EH personality function for the current frame.
However, it's not clear what the unwinder does when the return address
happens to be the last address of one function and the first address of
the next function.
The Visual C++ EH personality, _CxxFrameHandler3, needs to figure out
what the current EH state number is. It does this by consulting the
ip2state table, which maps from PC to state number. This seems to go
wrong when the return address is the last PC of the function or catch
funclet.
I'm not sure precisely which system is involved here, but in order to
address these real or hypothetical problems, I believe it is enough to
insert int3 after a call site if it would otherwise be the last
instruction in a function or funclet. I was able to reproduce some
similar problems locally by arranging for a noreturn call to appear at
the end of a catch block immediately before an unrelated function, and I
confirmed that the problems go away when an extra trailing int3
instruction is added.
MSVC inserts int3 after every noreturn function call, but I believe it's
only necessary to do it if the call would be the last instruction. This
change inserts a pseudo instruction that expands to int3 if it is in the
last basic block of a function or funclet. I did what I could to run the
Microsoft compiler EH tests, and the ones I was able to run showed no
behavior difference before or after this change.
Differential Revision: https://reviews.llvm.org/D66980
llvm-svn: 370525
Summary:
This is a minor improvement on our past attempts to do this. Fixes
PR43155.
Reviewers: hans
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66905
llvm-svn: 370409
Summary:
This is an alternate approach to D63396
Currently funclets reuse the same stack slots that are used in the
parent function for saving callee-saved xmm registers. If the parent
function modifies a callee-saved xmm register before an excpetion is
thrown, the catch handler will overwrite the original saved value.
This patch allocates space in funclets stack for saving callee-saved xmm
registers and uses RSP instead RBP to access memory.
Signed-off-by: Pengfei Wang <pengfei.wang@intel.com>
Reviewers: rnk, RKSimon, craig.topper, annita.zhang, LuoYuanke, andrew.w.kaylor
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66596
Signed-off-by: Pengfei Wang <pengfei.wang@intel.com>
llvm-svn: 370005
This was a quick pass through some obvious places. I haven't tried the clang-tidy check.
I also replaced the zeroes in getX86SubSuperRegister with X86::NoRegister which is the real sentinel name.
Differential Revision: https://reviews.llvm.org/D66363
llvm-svn: 369151
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
r367088 made it so that funclets store XMM registers into their local
frame instead of storing them to the parent frame. However, that change
forgot to update the parent frame pointer offset for catch blocks. This
change does that.
Fixes crashes when an exception is rethrown in a catch block that saves
XMMs, as described in https://crbug.com/992860.
llvm-svn: 368631
Summary:
On windows if the frame size exceed 4096 bytes, compiler need to
generate a call to _alloca_probe. X86CallFrameOptimization pass
changes the reserved stack size and cause of stack probe function
not be inserted. This patch fix the issue by detecting the call
frame size, if the size exceed 4096 bytes, drop X86CallFrameOptimization.
Reviewers: craig.topper, wxiao3, annita.zhang, rnk, RKSimon
Reviewed By: rnk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65923
llvm-svn: 368503