We are relying on atrificial DAG edges inserted by the
MemOpClusterMutation to keep loads and stores together in the
post-RA scheduler. This does not work all the time since it
allows to schedule a completely independent instruction in the
middle of the cluster.
Removed the DAG mutation and added pass to bundle already
clustered instructions. These bundles are unpacked before the
memory legalizer because it does not work with bundles but also
because it allows to insert waitcounts in the middle of a store
cluster.
Removing artificial edges also allows a more relaxed scheduling.
Differential Revision: https://reviews.llvm.org/D72737
Summary:
Some tests have been hand edited without removing the
update_llc_test_checks header, some have slightly outdated CHECK lines
which still pass, and some have additional comments which
update_llc_test_checks pushes towards the function body.
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69402
Function return instruction lowering, currently uses the fixed register pair s[30:31] for holding
the return address. It can be any SGPR pair other than the CSRs. Created an SGPR pair sub-register class
exclusive of the CSRs, and used this regclass while lowering the return instruction.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D63924
llvm-svn: 365512
Every called function could possibly need this to calculate the
absolute address of stack objectst, and this avoids inserting a copy
around every call site in the kernel. It's also somewhat cleaner to
keep this in a callee saved SGPR.
llvm-svn: 363990
This forced the caller to be aware of this, which is an ugly ABI
feature.
Partially reverts r295877. The original reasons for doing this are
mostly fixed. Alloca is now in a non-0 address space, so it should be
OK to have 0 as a valid pointer. Since we treat the absolute address
as the pointer value, this part only really needed to apply to
kernels.
Since r357093, we avoid the need to increment/decrement the offset
register in more cases, and since r354816 the scavenger can fail
without spilling, so it's less critical that we try to avoid an offset
that fits in the MUBUF offset.
Restrict to callable functions for now to split this into 2 steps to
limit thte number of test updates and in case anything breaks.
llvm-svn: 362665
Since the beginning, the offset of a frame index has been consistently
interpreted backwards. It was treating it as an offset from the
scratch wave offset register as a frame register. The correct
interpretation is the offset from the SP on entry to the function,
before the prolog. Frame index elimination then should select either
SP or another register as an FP.
Treat the scratch wave offset on kernel entry as the pre-incremented
SP. Rely more heavily on the standard hasFP and frame pointer
elimination logic, and clean up the private reservation code. This
saves a copy in most callee functions.
The kernel prolog emission code is still kind of a mess relying on
checking the uses of physical registers, which I would prefer to
eliminate.
Currently selection directly emits MUBUF instructions, which require
using a reference to some register. Use the register chosen for SP,
and then ignore this later. This should probably be cleaned up to use
pseudos that don't refer to any specific base register until frame
index elimination.
Add a workaround for shaders using large numbers of SGPRs. I'm not
sure these cases were ever working correctly, since as far as I can
tell the logic for figuring out which SGPR is the scratch wave offset
doesn't match up with the shader input initialization in the shader
programming guide.
llvm-svn: 362661