Legacy implementation of the LLVM dialect in MLIR contained an instance of
llvm::Module as it was required to parse LLVM IR types. The access to the data
layout of this module was exposed to the users for convenience, but in practice
this layout has always been the default one obtained by parsing an empty layout
description string. Current implementation of the dialect no longer relies on
wrapping LLVM IR types, but it kept an instance of DataLayout for
compatibility. This effectively forces a single data layout to be used across
all modules in a given MLIR context, which is not desirable. Remove DataLayout
from the LLVM dialect and attach it as a module attribute instead. Since MLIR
does not yet have support for data layouts, use the LLVM DataLayout in string
form with verification inside MLIR. Introduce the layout when converting a
module to the LLVM dialect and keep the default "" description for
compatibility.
This approach should be replaced with a proper MLIR-based data layout when it
becomes available, but provides an immediate solution to compiling modules with
different layouts, e.g. for GPUs.
This removes the need for LLVMDialectImpl, which is also removed.
Depends On D85650
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D85652
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
The convresion of memref cast operaitons from the Standard dialect to the LLVM
dialect has been emitting bitcasts from a struct type to itself. Beyond being
useless, such casts are invalid as bitcast does not operate on aggregate types.
This kept working by accident because LLVM IR bitcast construction API skips
the construction if types are equal before it verifies that the types are
acceptable in a bitcast. Do not emit such bitcasts, the memref cast that only
adds/erases size information is in fact a noop on the current descriptor as it
always contains dynamic values for all sizes.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D85899
This revision removes all of the lingering usages of Type::getKind. A consequence of this is that FloatType is now split into 4 derived types that represent each of the possible float types(BFloat16Type, Float16Type, Float32Type, and Float64Type). Other than this split, this revision is NFC.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D85566
Inital conversion of `spv._address_of` and `spv.globalVariable`.
In SPIR-V, the global returns a pointer, whereas in LLVM dialect
the global holds an actual value. This difference is handled by
`spv._address_of` and `llvm.mlir.addressof`ops that both return
a pointer. Moreover, only current invocation is in conversion's
scope.
Reviewed By: antiagainst, mravishankar
Differential Revision: https://reviews.llvm.org/D84626
This change adds initial support needed to generate OpenCL compliant SPIRV.
If Kernel capability is declared then memory model becomes OpenCL.
If Addresses capability is declared then addressing model becomes Physical64.
Additionally for Kernel capability interface variable ABI attributes are not
generated as entry point function is expected to have normal arguments.
Differential Revision: https://reviews.llvm.org/D85196
Using a shuffle for the last recursive step in progressive lowering not only
results in much more compact IR, but also more efficient code (since the
backend is no longer confused on subvector aliasing for longer vectors).
E.g. the following
%f = vector.shape_cast %v0: vector<1024xf32> to vector<32x32xf32>
yields much better x86-64 code that runs 3x faster than the original.
Reviewed By: bkramer, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D85482
Original modeling of LLVM IR types in the MLIR LLVM dialect had been wrapping
LLVM IR types and therefore required the LLVMContext in which they were created
to outlive them, which was solved by placing the LLVMContext inside the dialect
and thus having the lifetime of MLIRContext. This has led to numerous issues
caused by the lack of thread-safety of LLVMContext and the need to re-create
LLVM IR modules, obtained by translating from MLIR, in different LLVM contexts
to enable parallel compilation. Similarly, llvm::Module had been introduced to
keep track of identified structure types that could not be modeled properly.
A recent series of commits changed the modeling of LLVM IR types in the MLIR
LLVM dialect so that it no longer wraps LLVM IR types and has no dependence on
LLVMContext and changed the ownership model of the translated LLVM IR modules.
Remove LLVMContext and LLVM modules from the implementation of MLIR LLVM
dialect and clean up the remaining uses.
The only part of LLVM IR that remains necessary for the LLVM dialect is the
data layout. It should be moved from the dialect level to the module level and
replaced with an MLIR-based representation to remove the dependency of the
LLVMDialect on LLVM IR library.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85445
Due to the original type system implementation, LLVMDialect in MLIR contains an
LLVMContext in which the relevant objects (types, metadata) are created. When
an MLIR module using the LLVM dialect (and related intrinsic-based dialects
NVVM, ROCDL, AVX512) is converted to LLVM IR, it could only live in the
LLVMContext owned by the dialect. The type system no longer relies on the
LLVMContext, so this limitation can be removed. Instead, translation functions
now take a reference to an LLVMContext in which the LLVM IR module should be
constructed. The caller of the translation functions is responsible for
ensuring the same LLVMContext is not used concurrently as the translation no
longer uses a dialect-wide context lock.
As an additional bonus, this change removes the need to recreate the LLVM IR
module in a different LLVMContext through printing and parsing back, decreasing
the compilation overhead in JIT and GPU-kernel-to-blob passes.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D85443
The RewritePattern will become one of several, and will be part of the LLVM conversion pass (instead of a separate pass following LLVM conversion).
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D84946
Historical modeling of the LLVM dialect types had been wrapping LLVM IR types
and therefore needed access to the instance of LLVMContext stored in the
LLVMDialect. The new modeling does not rely on that and only needs the
MLIRContext that is used for uniquing, similarly to other MLIR types. Change
LLVMType::get<Kind>Ty functions to take `MLIRContext *` instead of
`LLVMDialect *` as first argument. This brings the code base closer to
completely removing the dependence on LLVMContext from the LLVMDialect,
together with additional support for thread-safety of its use.
Depends On D85371
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85372
This prepares for the removal of llvm::Module and LLVMContext from the
mlir::LLVMDialect.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85371
The intrinsics were already supported and vector.transfer_read/write lowered
direclty into these operations. By providing them as individual ops, however,
clients can used them directly, and it opens up progressively lowering transfer
operations at higher levels (rather than direct lowering to LLVM IR as done now).
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D85357
Previous type model in the LLVM dialect did not support identified structure
types properly and therefore could use stateless translations implemented as
free functions. The new model supports identified structs and must keep track
of the identified structure types present in the target context (LLVMContext or
MLIRContext) to avoid creating duplicate structs due to LLVM's type
auto-renaming. Expose the stateful type translation classes and use them during
translation, storing the state as part of ModuleTranslation.
Drop the test type translation mechanism that is no longer necessary and update
the tests to exercise type translation as part of the main translation flow.
Update the code in vector-to-LLVM dialect conversion that relied on stateless
translation to use the new class in a stateless manner.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85297
Per Vulkan's SPIR-V environment spec: "While the OpSRem and OpSMod
instructions are supported by the Vulkan environment, they require
non-negative values and thus do not enable additional functionality
beyond what OpUMod provides."
The `getOffsetForBitwidth` function is used for lowering std.load
and std.store, whose indices are of `index` type and cannot be
negative. So we should be okay to use spv.UMod directly here to
be exact. Also made the comment explicit about the assumption.
Differential Revision: https://reviews.llvm.org/D83714
`promoteMemRefDescriptors` also converts types of every operand, not only
memref-typed ones. I think `promoteMemRefDescriptors` name does not imply that.
Differential Revision: https://reviews.llvm.org/D85325
Handle the case where the ViewOp takes in a memref that has
an memory space.
Reviewed By: ftynse, bondhugula, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D85048
This patch introduces a conversion of `spv.loop` to LLVM dialect.
Similarly to `spv.selection`, op's control attributes are not mapped
to LLVM yet and therefore the conversion fails if the loop control is
not `None`. Also, all blocks within the loop should be reachable in
order for conversion to succeed.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D84245
Introduces the expand and compress operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
Reviewed By: reidtatge
Differential Revision: https://reviews.llvm.org/D84888
A new first-party modeling for LLVM IR types in the LLVM dialect has been
developed in parallel to the existing modeling based on wrapping LLVM `Type *`
instances. It resolves the long-standing problem of modeling identified
structure types, including recursive structures, and enables future removal of
LLVMContext and related locking mechanisms from LLVMDialect.
This commit only switches the modeling by (a) renaming LLVMTypeNew to LLVMType,
(b) removing the old implementaiton of LLVMType, and (c) updating the tests. It
is intentionally minimal. Separate commits will remove the infrastructure built
for the transition and update API uses where appropriate.
Depends On D85020
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85021
The bug was not noticed because we didn't have a lot of custom type conversions
directly to LLVM dialect.
Differential Revision: https://reviews.llvm.org/D85192
Lowering of newly defined Conv ops in TC syntax to standard
dialect is not supported and therefore this commit adds support
for it.
Differential Revision: https://reviews.llvm.org/D84840
Replaced definition of named ND ConvOps with tensor comprehension
syntax which reduces boilerplate code significantly. Furthermore,
new ops to support TF convolutions added (without strides and dilations).
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84628
Now that we can have a memref of index type, we no longer need to materialize shapes in i64 and then index_cast.
Differential Revision: https://reviews.llvm.org/D84938
When lowering to the standard dialect, we currently support only the extent
tensor variant of the shape.rank operation. This change lets the conversion
pattern fail in a well-defined manner.
Differential Revision: https://reviews.llvm.org/D84852
This patch introduces new intrinsics in LLVM dialect:
- `llvm.intr.floor`
- `llvm.intr.maxnum`
- `llvm.intr.minnum`
- `llvm.intr.smax`
- `llvm.intr.smin`
These intrinsics correspond to SPIR-V ops from GLSL
extended instruction set (`spv.GLSL.Floor`, `spv.GLSL.FMax`,
`spv.GLSL.FMin`, `spv.GLSL.SMax` and `spv.GLSL.SMin`
respectively). Also conversion patterns for them were added.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84661
This is a second patch on conversion of GLSL ops to LLVM dialect.
It introduces patterns to convert `spv.InverseSqrt` and `spv.Tanh`.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84633
This is the first patch that adds support for GLSL extended
instruction set ops. These are direct conversions, apart from `spv.Tan`
that is lowered to `sin() / cos()`.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84627
This commit is part of a greater project which aims to add
full end-to-end support for convolutions inside mlir. The
reason behind having conv ops for each rank rather than
having one generic ConvOp is to enable better optimizations
for every N-D case which reflects memory layout of input/kernel
buffers better and simplifies code as well. We expect plain linalg.conv
to be progressively retired.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D83879
The lowering does not support all types for its source operations. This change
makes the patterns fail in a well-defined manner.
Differential Revision: https://reviews.llvm.org/D84443
The current modeling of LLVM IR types in MLIR is based on the LLVMType class
that wraps a raw `llvm::Type *` and delegates uniquing, printing and parsing to
LLVM itself. This is model makes thread-safe type manipulation hard and is
being progressively replaced with a cleaner MLIR model that replicates the type
system. In the new model, LLVMType will no longer have an underlying LLVM IR
type. Restrict access to this type in the current model in preparation for the
change.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D84389
Operating on indices and extent tensors directly, the type conversion is no
longer needed for the supported cases.
Differential Revision: https://reviews.llvm.org/D84442
This adds conversions for const_size and to_extent_tensor. Also, cast-like operations are now folded away if the source and target types are the same.
Differential Revision: https://reviews.llvm.org/D84745
Conversion of `spv.BranchConditional` now supports branch weights
that are mapped to weights vector in `llvm.cond_br`.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84657
This patch adds support of Volatile and Nontemporal
memory accesses to `spv.Load` and `spv.Store`. These attributes are
modelled with a `volatile` and `nontemporal` flags.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84739
Do not return error code, instead return created resource handles or void. Error reporting is done by the library function.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D84660
- replace DotOp, now that DRR rules have been dropped.
- Capture arguments mismatch in the parser. The number of parsed arguments must
equal the number of expected arguments.
Reviewed By: ftynse, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D82952
The LowerAffine psas was a FunctionPass only for legacy
reasons. Making this Op-agnostic allows it to be used from command
line when affine expressions are within operations other than
`std.func`.
Differential Revision: https://reviews.llvm.org/D84590
This patch introduces conversion pattern for `spv.Store` and `spv.Load`.
Only op with `Function` Storage Class is supported at the moment
because `spv.GlobalVariable` has not been introduced yet. If the op
has memory access attribute, then there are the following cases.
If the access is `Aligned`, add alignment to the op builder. Otherwise
the conversion fails as other cases are not supported yet because they
require additional attributes for `llvm.store`/`llvm.load` ops: e.g.
`volatile` and `nontemporal`.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84236
The patch introduces the conversion pattern for function-level
`spv.Variable`. It is modelled as `llvm.alloca` op. If initialized, then
additional store instruction is used. Note that there is no initialization
for arrays and structs since constants of these types are not supported in
LLVM dialect yet. Also, at the moment initialisation is only possible via
`spv.constant` (since `spv.GlobalVariable` conversion is not implemented
yet).
The input code has some scoping is not taken into account and will be
addressed in a different patch.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D84224
This concerns `from/to_extent_tensor`, `size_to_index`, `index_to_size`, and
`const_size` conversion patterns. The new lowering will work directly on indices
and extent tensors. The shape and size values will allow for error values but
are not yet supported by the dialect conversion.
Differential Revision: https://reviews.llvm.org/D84436
The operation `shape.shape_of` now returns an extent tensor `tensor<?xindex>` in
cases when no error are possible. All consuming operation will eventually accept
both, shapes and extent tensors.
Differential Revision: https://reviews.llvm.org/D84160
The default lowering of `assert` calls `abort` in case the assertion is
violated. The failure message is ignored but should be used by custom lowerings
that can assume more about their environment.
Differential Revision: https://reviews.llvm.org/D83886
This revision adds support for much deeper type conversion integration into the conversion process, and enables auto-generating cast operations when necessary. Type conversions are now largely automatically managed by the conversion infra when using a ConversionPattern with a provided TypeConverter. This removes the need for patterns to do type cast wrapping themselves and moves the burden to the infra. This makes it much easier to perform partial lowerings when type conversions are involved, as any lingering type conversions will be automatically resolved/legalized by the conversion infra.
To support this new integration, a few changes have been made to the type materialization API on TypeConverter. Materialization has been split into three separate categories:
* Argument Materialization: This type of materialization is used when converting the type of block arguments when calling `convertRegionTypes`. This is useful for contextually inserting additional conversion operations when converting a block argument type, such as when converting the types of a function signature.
* Source Materialization: This type of materialization is used to convert a legal type of the converter into a non-legal type, generally a source type. This may be called when uses of a non-legal type persist after the conversion process has finished.
* Target Materialization: This type of materialization is used to convert a non-legal, or source, type into a legal, or target, type. This type of materialization is used when applying a pattern on an operation, but the types of the operands have not yet been converted.
Differential Revision: https://reviews.llvm.org/D82831
Introduces the scatter/gather operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
The operations can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for a gather/scatter. The semantics of the operation
closely correspond to those of the corresponding llvm intrinsics.
Note that the operation allows for a dynamic index vector (which is
important for sparse computations). However, this first reference
lowering implementation "serializes" the address computation when
base + index_vector is converted to a vector of pointers. Exploring
how to use SIMD properly during these step is TBD. More general
memrefs and idiomatic versions of striding are also TBD.
Reviewed By: arpith-jacob
Differential Revision: https://reviews.llvm.org/D84039
This patch introduces conversion pattern for `spv.selection` op.
The conversion can only be applied to selection with all blocks being
reachable. Moreover, selection with control attributes "Flatten" and
"DontFlatten" is not supported.
Since the `PatternRewriter` hook for block merging has not been implemented
for `ConversionPatternRewriter`, merge and continue blocks are kept
separately.
Reviewed By: antiagainst, ftynse
Differential Revision: https://reviews.llvm.org/D83860
This patch introduces conversion for `spv.Branch` and `spv.BranchConditional`
ops. Branch weigths for `spv.BranchConditional` are not supported at the
moment, and conversion in this case fails.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D83784
Summary: The logic was conservative but inverted: cases that should remain unmasked became 1-D masked.
Differential Revision: https://reviews.llvm.org/D84051
Lower `shape.shape_eq` to the `scf` (and `std`) dialect. For now, this lowering
is limited to extent tensor operands.
Differential Revision: https://reviews.llvm.org/D82530
To make it clear when shape error values cannot occur the shape operations can
operate on extent tensors. This change updates the lowering for `shape.reduce`
accordingly.
Differential Revision: https://reviews.llvm.org/D83944
The use of the `scf.for` callback builder does not allow for a rollback of the
emitted conversions. Instead, we populate the loop body through the conversion
rewriter directly.
Differential Revision: https://reviews.llvm.org/D83873
- Arguments of the first block of a region are considered region arguments.
- Add API on Region class to deal with these arguments directly instead of
using the front() block.
- Changed several instances of existing code that can use this API
- Fixes https://bugs.llvm.org/show_bug.cgi?id=46535
Differential Revision: https://reviews.llvm.org/D83599
Summary: The native alignment may generally not be used when lowering a vector.transfer to the underlying load/store operation. This revision fixes the unmasked load/store alignment to match that of the masked path.
Differential Revision: https://reviews.llvm.org/D83684
- Provide default value for `ArrayRef<NamedAttribute> attributes` parameter of
the collective params build method.
- Change the `genSeparateArgParamBuilder` function to not generate build methods
that may be ambiguous with the new collective params build method.
- This change should help eliminate passing empty NamedAttribue ArrayRef when the
collective params build method is used
- Extend op-decl.td unit test to make sure the ambiguous build methods are not
generated.
Differential Revision: https://reviews.llvm.org/D83517
Per the Vulkan's SPIR-V environment spec, "for the OpSRem and OpSMod
instructions, if either operand is negative the result is undefined."
So we cannot directly use spv.SRem/spv.SMod if either operand can be
negative. Emulate it via spv.UMod.
Because the emulation uses spv.SNegate, this commit also defines
spv.SNegate.
Differential Revision: https://reviews.llvm.org/D83679
Summary:
These are semantically equivalent, but fmuladd allows decaying the op
into fmul+fadd if there is no fma instruction available. llvm.fma lowers
to scalar calls to libm fmaf, which is a lot slower.
Reviewers: nicolasvasilache, aartbik, ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D83666
This revision folds vector.transfer operations by updating the `masked` bool array attribute when more unmasked dimensions can be discovered.
Differential revision: https://reviews.llvm.org/D83586
This patch introduces type conversion for SPIR-V structs. Since
handling offset case requires thorough testing, it was left out
for now. Hence, only structs with no offset are currently
supported. Also, structs containing member decorations cannot
be translated.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D83403
This patch adds type conversion for 4 SPIR-V types: array, runtime array, pointer
and struct. This conversion is integrated using a separate function
`populateSPIRVToLLVMTypeConversion()` that adds new type conversions. At the moment,
this is a basic skeleton that allows to perfom conversion from SPIR-V array,
runtime array and pointer types to LLVM typesystem. There is no support of array
strides or storage classes. These will be supported on the case by case basis.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D83399
The ConvertVectorToLLVM pass defines options that can be passed
on the command line (currently only reassociation of FP reductions
through -convert-vector-to-llvm='reassociate-fp-reductions). This
CL enables setting these options programmatically (forward looking
to more options than just reassociation, as well as setting the
values from code rather than command line).
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D83420
This patch adds conversion patterns for `spv.BitFieldSExtract` and `spv.BitFieldUExtract`.
As in the patch for `spv.BitFieldInsert`, `offset` and `count` have to be broadcasted in
vector case and casted to match the type of the base.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D82640
This patch introduces 3 new direct conversions for SPIR-V ops:
- `spv.Select`
- `spv.Undef`
- `spv.FMul` that was skipped in the patch with arithmetic ops
Differential Revision: https://reviews.llvm.org/D83291
- This will eliminate the need to pass an empty `ArrayRef<NamedAttribute>{}` when
no named attributes are required on the function.
Differential Revision: https://reviews.llvm.org/D83356
scf.if currently lacks folding on true / false conditionals.
Such foldings are a bit more involved than can be addressed immediately.
This revision introduces an eager folding for lowering vector.transfer operations in the presence of unrolling.
Differential revision: https://reviews.llvm.org/D83146
This patch introduces conversion pattern for `spv.constant` with scalar
and vector types. There is a special case when the constant value is a
signed/unsigned integer (vector of integers). Since LLVM dialect does not
have signedness semantics, the types had to be converted to signless ints.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D82936
Added conversion pattern for SPIR-V `FunctionCallOp`. Based on
specification, it returns no results or a single result, so
can be mapped directly to LLVM dialect's `llvm.call`.
Reviewed By: antiagainst, ftynse
Differential Revision: https://reviews.llvm.org/D83030
This patch introduces conversion pattern for `spv.BitFiledInsert` op,
as well as some utility functions to facilitate code reading.
Since `spv.BitFiledInsert` may take both vector and integer operands,
this case was specifically handled by broadcasting values (`count`
and `offset` here) to vectors. Moreover, the types had to be converted
to same bitwidth in order to conform with LLVM dialect rules.
This was done with `zext` when extending (Note that `count` and
`offset` are treated as unsigned) and `trunc` in the opposite case.
For the latter one, truncation is safe since the op is defined only when
`count`/`offset`/their sum is less than the bitwidth of the result.
This introduces a natural bound of the value of 64, which can be
expressed as `i8`.
Reviewed By: antiagainst, ftynse
Differential Revision: https://reviews.llvm.org/D82639
This allow lowering to support scf.for and scf.if with results. As right now
spv region operations don't have return value the results are demoted to
Function memory. We create one allocation per result right before the region
and store the yield values in it. Then we can load back the value from
allocation to be able to use the results.
Differential Revision: https://reviews.llvm.org/D82246
Summary:
This changes the casing of MLIRGPUtoGPURuntimeTransforms to be consistent
with other transform libraries.
Differential Revision: https://reviews.llvm.org/D82841
Summary:
This changes the casing of MLIRGPUtoROCDLTransforms to be consistent
with other transform libraries.
Differential Revision: https://reviews.llvm.org/D82843
This changes the casing of MLIRGPUtoVulkanTransforms to be consistent
with other transform libraries.
Differential Revision: https://reviews.llvm.org/D82840
The declarative conversion patterns caused crashes in the asan configuration.
The non-declarative implementation circumvents this.
Differential Revision: https://reviews.llvm.org/D82797
Added conversion pattern and tests for `spv.Bitcast` op. This one has
a direct mapping in LLVM dialect so `DirectConversionPattern` was used.
Differential Revision: https://reviews.llvm.org/D82748
This patch introduces new conversion patterns for bit and logical
negation op: `spv.Not` and `spv.LogicalNot`. They are implemented
by applying xor on the operand and mask with all bits set.
Differential Revision: https://reviews.llvm.org/D82637
Current Affine comparison builders, which use operator overload, default to signed comparison. This creates the possibility of misuse of these builders and potential correctness issues when dealing with unsigned integers. This change makes the distinction between signed and unsigned comparison builders and forces the caller to make a choice between the two.
Differential Revision: https://reviews.llvm.org/D82323
Summary:
The patch makes the index type lowering of the GPU to NVVM/ROCDL conversion configurable. It introduces a pass option that controls the bitwidth used when lowering index computations and uses the LowerToLLVMOptions structure to control the Standard to LLVM lowering.
This commit fixes a use-after-free bug introduced by the reverted commit d10b1a3. It implements the following changes:
- Added a getDefaultOptions method to the LowerToLLVMOptions struct that returns a reference to statically allocated default options.
- Use the getDefaultOptions method to provide default LowerToLLVMOptions (instead of an initializer list).
- Added comments to clarify the required lifetime of the LowerToLLVMOptions
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D82475
`llvm.mlir.constant` was originally introduced as an LLVM dialect counterpart
to `std.constant`. As such, it was supporting "function pointer" constants
derived from the symbol name. This is different from `std.constant` that allows
for creation of a "function" constant since MLIR, unlike LLVM IR, supports
this. Later, `llvm.mlir.addressof` was introduced as an Op that obtains a
constant pointer to a global in the LLVM dialect. It naturally extends to
functions (in LLVM IR, functions are globals) and should be used for defining
"function pointer" values instead.
Fixes PR46344.
Differential Revision: https://reviews.llvm.org/D82667
When the origin of a shape is an extent tensor the operation `get_extent` can be
lowered directly to `extract_element`.
This choice circumvents the necessity to materialize the shape in memory.
Differential Revision: https://reviews.llvm.org/D82645
When the shape is derived from a tensor argument the shape extent can be derived
directly from that tensor with `std.dim`.
This lowering pattern circumvents the necessity to materialize the shape in
memory.
Differential Revision: https://reviews.llvm.org/D82644
Rationale:
In general, passing "fastmath" from MLIR to LLVM backend is not supported, and even just providing such a feature for experimentation is under debate. However, passing fine-grained fastmath related attributes on individual operations is generally accepted. This CL introduces an option to instruct the vector-to-llvm lowering phase to annotate floating-point reductions with the "reassociate" fastmath attribute, which allows the LLVM backend to use SIMD implementations for such constructs. Oher lowering passes can start using this mechanism right away in cases where reassociation is allowed.
Benefit:
For some microbenchmarks on x86-avx2, speedups over 20 were observed for longer vector (due to cleaner, spill-free and SIMD exploiting code).
Usage:
mlir-opt --convert-vector-to-llvm="reassociate-fp-reductions"
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D82624
Implemented conversion for `spv.BitReverse` and `spv.BitCount`. Since ODS
generates builders in a different way for LLVM dialect intrinsics, I
added attributes to build method in `DirectConversionPattern` class. The
tests for these ops are in `bitwise-ops-to-llvm.mlir`.
Differential Revision: https://reviews.llvm.org/D82286
Conversions of allocation-related operations in Standard-to-LLVM need
declarations of "malloc" and "free" (or equivalents). They use locally created
OpBuilders pointed at the module level to declare these functions if necessary.
This is poorly compatible with the pattern infrastructure that is unaware of
new operations being created. Update the insertion point of the main rewriter
instead.
Differential Revision: https://reviews.llvm.org/D82649
Initially, unranked memref descriptors in the LLVM dialect were designed only
to be passed into functions. An assertion was guarding against returning
unranked memrefs from functions in the standard-to-LLVM conversion. This is
insufficient for functions that wish to return an unranked memref such that the
caller does not know the rank in advance, and hence cannot allocate the
descriptor and pass it in as an argument.
Introduce a calling convention for returning unranked memref descriptors as
follows. An unranked memref descriptor always points to a ranked memref
descriptor stored on stack of the current function. When an unranked memref
descriptor is returned from a function, the ranked memref descriptor it points
to is copied to dynamically allocated memory, the ownership of which is
transferred to the caller. The caller is responsible for deallocating the
dynamically allocated memory and for copying the pointed-to ranked memref
descriptor onto its stack.
Provide default lowerings for std.return, std.call and std.indirect_call that
maintain the conversion defined above.
This convention is additionally exercised by a runtime test to guard against
memory errors.
Differential Revision: https://reviews.llvm.org/D82647
Lower `shape.rank` to standard dialect.
A shape's size is the same as the extent of the first and only dimension of the
`tensor<?xindex>` it is represented by.
Differential Revision: https://reviews.llvm.org/D82080
This patch introduces conversion patterns for `spv.module` and `spv._module_end`.
SPIR-V module is converted into `ModuleOp`. This will play a role of enclosing
scope to LLVM ops. At the moment, SPIR-V module attributes (such as memory model,
etc) are ignored.
Differential Revision: https://reviews.llvm.org/D82468
This patch provides an implementation for `spv.func` conversion. The pattern
is populated in a separate method added to the pass. At the moment, the type
signature conversion only includes the supported types. The conversion pattern
also matches SPIR-V function control attributes to LLVM function attributes.
Those are modelled as `passthrough` attributes in LLVM dialect. The following
mapping are used:
- None: no attributes passed
- Inline: `alwaysinline` seems to be the right equivalent (`inlinehint` is
semantically weaker in my opinion)
- DontInline: `noinline`
- Pure and Const: I think those can be modelled as `readonly` and `readnone`
attributes respectively.
Also, 2 patterns added for return ops conversion (`spv.Return` for void return
and `spv.ReturnValue` for a single value return).
Differential Revision: https://reviews.llvm.org/D81931
The patch makes the index type lowering of the GPU to NVVM/ROCDL
conversion configurable. It introduces a pass option that controls the
bitwidth used when lowering index computations.
Differential Revision: https://reviews.llvm.org/D80285
Subview operations are not natively supported downstream in the spirv path.
This change allows removing subview when used by vector transfer the same way
we already do it when they are used by LoadOp/StoreOp
Differential Revision: https://reviews.llvm.org/D82106
Lower `shape.shape_of` to standard dialect.
This lowering supports statically and dynamically shaped tensors.
Support for unranked tensors will be added as part of the lowering to `scf`.
Differential Revision: https://reviews.llvm.org/D82098
This revision removes the TypeConverter parameter passed to the apply* methods, and instead moves the responsibility of region type conversion to patterns. The types of a region can be converted using the 'convertRegionTypes' method, which acts similarly to the existing 'applySignatureConversion'. This method ensures that all blocks within, and including those moved into, a region will have the block argument types converted using the provided converter.
This has the benefit of making more of the legalization logic controlled by patterns, instead of being handled explicitly by the driver. It also opens up the possibility to support multiple type conversions at some point in the future.
This revision also adds a new utility class `FailureOr<T>` that provides a LogicalResult friendly facility for returning a failure or a valid result value.
Differential Revision: https://reviews.llvm.org/D81681
Summary:
The "i1" (viz. bool) type does not have a proper equivalent on the "C"
size. So, to avoid any ABIs issues, we simply use print_i32 on an i32
value of one or zero for true and false. This has the added advantage
that one less function needs to be implemented when porting the runtime
support library.
Reviewers: ftynse, bkramer, nicolasvasilache
Reviewed By: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D82048
Setup declarative rewrite rules to lower the `shape` dialect to the `std`
dialect with two exemplary rules for `from/to_extent_tensor`.
Differential Revision: https://reviews.llvm.org/D82022
Added support of simple logical ops: `LogicalAnd`, `LogicalOr`,
`LogicalEqual` and `LogicalNotEqual`. Added a missing conversion
for `UMod` op.
Also, implemented SPIR-V cast ops conversion. There are 4 simple
case where there is a clear equivalent in LLVM (e.g. `ConvertFToS`
is `fptosi`). For `FConvert`, `SConvert` and `UConvert` we
distinguish between truncation and extension based on the bit
width of the operand.
Differential Revision: https://reviews.llvm.org/D81812
This patch changes the casing of MLIRGPUtoSPIRVTransforms
to be consistent with other transforms libraries.
Differential Revision: https://reviews.llvm.org/D81902
Implement the missing lowering from `std.dim` to the LLVM dialect in case of a
dynamic dimension.
Differential Revision: https://reviews.llvm.org/D81834
Summary:
This revision replaces MatmulOp, now that DRR rules have been dropped.
This revision also fixes minor parsing bugs and a plugs a few holes to get e2e paths working (e.g. library call emission).
During the replacement the i32 version had to be dropped because only the EDSC operators +, *, etc support type inference.
Deciding on a type-polymorphic behavior, and implementing it, is left for future work.
Reviewers: aartbik
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, msifontes
Tags: #mlir
Differential Revision: https://reviews.llvm.org/D81935
This revision replaces MatmulOp, now that DRR rules have been dropped.
This revision also fixes minor parsing bugs and a plugs a few holes to get e2e paths working (e.g. library call emission).
During the replacement the i32 version had to be dropped because only the EDSC operators +, *, etc support type inference.
Deciding on a type-polymorphic behavior, and implementing it, is left for future work.
Differential Revision: https://reviews.llvm.org/D79762
This reverts commit 32c757e4f8.
Broke the build bot:
******************** TEST 'MLIR :: Examples/standalone/test.toy' FAILED ********************
[...]
/tmp/ci-KIMiRFcVZt/lib/libMLIRLinalgToLLVM.a(LinalgToLLVM.cpp.o): In function `(anonymous namespace)::ConvertLinalgToLLVMPass::runOnOperation()':
LinalgToLLVM.cpp:(.text._ZN12_GLOBAL__N_123ConvertLinalgToLLVMPass14runOnOperationEv+0x100): undefined reference to `mlir::populateExpandTanhPattern(mlir::OwningRewritePatternList&, mlir::MLIRContext*)'
Summary:
Add a pattern for expanding tanh op into exp form.
A `tanh` is expanded into:
1) 1-exp^{-2x} / 1+exp^{-2x}, if x => 0
2) exp^{2x}-1 / exp^{2x}+1 , if x < 0.
Differential Revision: https://reviews.llvm.org/D81618
Similarly to `scf::ForOp`, introduce additional `function_ref` arguments to
`AffineForOp::build` that can be used to populate the body of the loop during
its construction. Provide compatibility functions for constructing affine loop
nests using `edsc::ScopedContext`.
`edsc::AffineLoopNestBuilder` and reletad functionality is now deprecated and
will be removed soon, users are expected to switch to `affineLoopNestBuilder`
that provides similar functionality with a simpler OpBuilder-based
implementation.
Differential Revision: https://reviews.llvm.org/D81754
Use ::Adaptor alias instead uniformly. Makes the naming more consistent as
adaptor can refer to attributes now too.
Differential Revision: https://reviews.llvm.org/D81789
This patch has shift ops conversion implementation. In SPIR-V dialect,
`Shift` and `Base` may have different bit width. On the contrary,
in LLVM dialect both `Base` and `Shift` have to be of the same bit width.
This leads to the following cases:
- if `Base` has the same bit width as `Shift`, the conversion is
straightforward.
- if `Base` has a greater bit width than `Shift`, shift is sign/zero
extended first. Then the extended value is passed to the shift.
- otherwise the conversion is considered to be illegal.
Differential Revision: https://reviews.llvm.org/D81546
Implemented `FComparePattern` and `IComparePattern` classes
that provide conversion of SPIR-V comparison ops (such as
`spv.FOrdGreaterThanEqual` and others) to LLVM dialect.
Also added tests in `comparison-ops-to-llvm.mlir`.
Differential Revision: https://reviews.llvm.org/D81487
Summary:
* extra ';' in the following files:
mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
mlir/lib/Dialect/Shape/IR/Shape.cpp
* base class ‘mlir::ConvertVectorToSCFBase<ConvertVectorToSCFPass>’
should be explicitly initialized in the copy constructor [-Wextra] in
mlir/lib/Conversion/VectorToSCF/VectorToSCF.cpp
* warning: ‘bool Expression::operator==(const Expression&) const’
defined but not used [-Wunused-function] in
mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-gen.cpp
Differential Revision: https://reviews.llvm.org/D81673
Following the previous revision `D81100`, this commit implements a templated class
that would provide conversion patterns for “straightforward” SPIR-V ops into
LLVM dialect. Templating allows to abstract away from concrete implementation
for each specific op. Those are mainly binary operations. Currently supported
and tested ops are:
- Arithmetic ops: `IAdd`, `ISub`, `IMul`, `FAdd`, `FSub`, `FMul`, `FDiv`, `FNegate`,
`SDiv`, `SRem` and `UDiv`
- Bitwise ops: `BitwiseAnd`, `BitwiseOr`, `BitwiseXor`
The implementation relies on `SPIRVToLLVMConversion` class that makes use of
`OpConversionPattern`.
Differential Revision: https://reviews.llvm.org/D81305
Allow for dynamic indices in the `dim` operation.
Rather than an attribute, the index is now an operand of type `index`.
This allows to apply the operation to dynamically ranked tensors.
The correct lowering of dynamic indices remains to be implemented.
Differential Revision: https://reviews.llvm.org/D81551
Summary:
The NVVM target only provides implementations for tanh etc. on f32 and
f64 operands. To also support f16, we now insert operations to extend to f32
and truncate back to f16 around the intrinsic call.
Differential Revision: https://reviews.llvm.org/D81473
These commits set up the skeleton for SPIR-V to LLVM dialect conversion.
I created SPIR-V to LLVM pass, registered it in Passes.td, InitAllPasses.h.
Added a pattern for `spv.BitwiseAndOp` and tests for it. Integer, float
and vector types are converted through LLVMTypeConverter.
Differential Revision: https://reviews.llvm.org/D81100
The operations `to_extent_tensor` and `from_extent_tensor` become no-ops when
lowered to the standard dialect.
This is possible with a lowering from `shape.shape` to `tensor<?xindex>`.
Differential Revision: https://reviews.llvm.org/D81162
Summary:
`mlir-rocm-runner` is introduced in this commit to execute GPU modules on ROCm
platform. A small wrapper to encapsulate ROCm's HIP runtime API is also inside
the commit.
Due to behavior of ROCm, raw pointers inside memrefs passed to `gpu.launch`
must be modified on the host side to properly capture the pointer values
addressable on the GPU.
LLVM MC is used to assemble AMD GCN ISA coming out from
`ConvertGPUKernelToBlobPass` to binary form, and LLD is used to produce a shared
ELF object which could be loaded by ROCm HIP runtime.
gfx900 is the default target be used right now, although it could be altered via
an option in `mlir-rocm-runner`. Future revisions may consider using ROCm Agent
Enumerator to detect the right target on the system.
Notice AMDGPU Code Object V2 is used in this revision. Future enhancements may
upgrade to AMDGPU Code Object V3.
Bitcode libraries in ROCm-Device-Libs, which implements math routines exposed in
`rocdl` dialect are not yet linked, and is left as a TODO in the logic.
Reviewers: herhut
Subscribers: mgorny, tpr, dexonsmith, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, llvm-commits
Tags: #mlir, #llvm
Differential Revision: https://reviews.llvm.org/D80676
Recently introduced allocation hoisting is quite conservative on the cases when it triggers.
This revision makes it such that the allocations for vector transfer lowerings are hoisted
to the top of the function.
This should be revisited in the context of parallelism and is a temporary workaround.
Differential Revision: https://reviews.llvm.org/D81253
Add SubgroupId, SubgroupSize and NumSubgroups to GPU dialect ops and add the
lowering of those ops to SPIRV.
Differential Revision: https://reviews.llvm.org/D81042
Add a new pass to lower operations from the `shape` to the `std` dialect.
The conversion applies only to the `size_to_index` and `index_to_size`
operations and affected types.
Other patterns will be added as needed.
Differential Revision: https://reviews.llvm.org/D81091
Dialect conversion infrastructure supports 1->N type conversions by requiring
individual conversions to provide facilities to generate operations
retrofitting N values into 1 of the original type when N > 1. This
functionality can also be used to materialize explicit "cast"-like operations,
but it did not support 1->1 type conversions until now. Modify TypeConverter to
support materialization of cast operations for 1-1 conversions.
This also makes materialization specification more extensible following the
same pattern as type conversions. Instead of overloading a virtual function,
users or subclasses of TypeConversion can now register type-specific
materialization callbacks that will be called in order for the given type.
Differential Revision: https://reviews.llvm.org/D79729
One header guard was overlooked when renaming LoopOps to SCF, rename it.
Also drop two unused macros, one of which referred to LoopOp (not "Ops",
hence the overlook).
Keeping in the affine.for to gpu.launch conversions, which should
probably be the affine.parallel to gpu.launch conversion as well.
Differential Revision: https://reviews.llvm.org/D80747
https://reviews.llvm.org/D79246 introduces alignment propagation for vector transfer operations. Unfortunately, the alignment calculation is incorrect and can result in crashes.
This revision fixes the calculation by using the natural alignment of the memref elemental type, instead of the resulting vector type.
If more alignment is desired, it can be done in 2 ways:
1. use a proper vector.type_cast to transform a memref<axbxcxdxf32> into a memref<axbxvector<cxdxf32>> giving a natural alignment of vector<cxdxf32>
2. add an alignment attribute to vector transfer operations and propagate it.
With this change the alignment in the relevant tests goes down from 128 to 4.
Lastly, a few minor cleanups are performed and the custom `isMinorIdentityMap` is deprecated.
Differential Revision: https://reviews.llvm.org/D80734
D80142 restructured MLIR-to-GPU-binary conversion to support multiple
targets. It also modified cmake files to link relevant LLVM components
in test/lib, which broke shared-library builds, and likely made the
conversions unusable outside mlir-opt (or other tools that link in test
library targets). Link these components to GPUCommon instead.
Differential Revision: https://reviews.llvm.org/D80739
This allows constructing operand adaptor from existing op (useful for commonalizing verification as I want to do in a follow up).
I also add ability to use member initializers for the generated adaptor constructors for convenience.
Differential Revision: https://reviews.llvm.org/D80667
Make ConvertKernelFuncToCubin pass to be generic:
- Rename to ConvertKernelFuncToBlob.
- Allow specifying triple, target chip, target features.
- Initializing LLVM backend is supplied by a callback function.
- Lowering process from MLIR module to LLVM module is via another callback.
- Change mlir-cuda-runner to adopt the revised pass.
- Add new tests for lowering to ROCm HSA code object (HSACO).
- Tests for CUDA and ROCm are kept in separate directories.
Differential Revision: https://reviews.llvm.org/D80142
This allocation of a workgroup memory is lowered to a
spv.globalVariable. Only static size allocation with element type
being int or float is handled. The lowering does account for the
element type that are not supported in the lowered spv.module based on
the extensions/capabilities and adjusts the number of elements to get
the same byte length.
Differential Revision: https://reviews.llvm.org/D80411
Now that OpBuilder is available in `build` functions, it becomes possible to
populate the "then" and "else" regions directly when building the "if"
operation. This is desirable in more structured forms of builders, especially
in when conditionals are mixed with loops. Provide new `build` APIs taking
callbacks for body constructors, similarly to scf::ForOp, and replace more
clunky edsc::BlockBuilder uses with these. The original APIs remain available
and go through the new implementation.
Differential Revision: https://reviews.llvm.org/D80527
This still allows `if (value)` while requiring an explicit cast when not
in a boolean context. This means things like `std::set<Value>` will no
longer compile.
Differential Revision: https://reviews.llvm.org/D80497
Due to similar APIs between CUDA and ROCm (HIP),
ConvertGpuLaunchFuncToCudaCalls pass could be used on both platforms with some
refactoring.
In this commit:
- Migrate ConvertLaunchFuncToCudaCalls from GPUToCUDA to GPUCommon, and rename.
- Rename runtime wrapper APIs be platform-neutral.
- Let GPU binary annotation attribute be specifiable as a PassOption.
- Naming changes within the implementation and tests.
Subsequent patches would introduce ROCm-specific tests and runtime wrapper
APIs.
Differential Revision: https://reviews.llvm.org/D80167
This reverts commit cdb6f05e2d.
The build is broken with:
You have called ADD_LIBRARY for library obj.MLIRGPUtoCUDATransforms without any source files. This typically indicates a problem with your CMakeLists.txt file
Due to similar APIs between CUDA and ROCm (HIP),
ConvertGpuLaunchFuncToCudaCalls pass could be used on both platforms with some
refactoring.
In this commit:
- Migrate ConvertLaunchFuncToCudaCalls from GPUToCUDA to GPUCommon, and rename.
- Rename runtime wrapper APIs be platform-neutral.
- Let GPU binary annotation attribute be specifiable as a PassOption.
- Naming changes within the implementation and tests.
Subsequent patches would introduce ROCm-specific tests and runtime wrapper
APIs.
Differential Revision: https://reviews.llvm.org/D80167
The subview semantics changes recently to allow for more natural
representation of constant offsets and strides. The legalization of
subview op for lowering to SPIR-V needs to account for this.
Also change the linearization to use the strides from the affine map
of a memref.
Differential Revision: https://reviews.llvm.org/D80270
Summary:
Previously, the only support partial lowering from vector transfers to SCF was
going through loops. This requires a dedicated allocation and extra memory
roundtrips because LLVM aggregates cannot be indexed dynamically (for more
details see the [deep-dive](https://mlir.llvm.org/docs/Dialects/Vector/#deeperdive)).
This revision allows specifying full unrolling which removes this additional roundtrip.
This should be used carefully though because full unrolling will spill, negating the
benefits of removing the interim alloc in the first place.
Proper heuristics are left for a later time.
Differential Revision: https://reviews.llvm.org/D80100
Originally, the SCFToStandard conversion only declared Ops from the Standard
dialect as legal after conversion. This is undesirable as it would fail the
conversion if the SCF ops contained ops from any other dialect. Furthermore,
this would be problematic for progressive lowering of `scf.parallel` to
`scf.for` after `ensureRegionTerminator` is made aware of the pattern rewriting
infrastructure because it creates temporary `scf.yield` operations declared
illegal. Change the legalization target to declare any op other than `scf.for`,
`scf.if` and `scf.parallel` legal.
Differential Revision: https://reviews.llvm.org/D80137
Multiple places in the code base were erasing Blocks or operations in them
using in-place modifications (`Block::erase` or `Block::clear`) unknown to
ConversionPatternRewriter. These operations could not be undone if the pattern
failed and could lead to inconsistent in-memory state of the IR with dangling
pointers. Use `ConversionPatternRewriter::eraseOp` and `::eraseBlock` instead.
Differential Revision: https://reviews.llvm.org/D80136
This should fix the error ```
VectorToSCF.cpp:238:62: error: specialization of 'template<class
ConcreteOp> mlir::LogicalResult
{anonymous}::NDTransferOpHelper<ConcreteOp>::doReplace()' in different
namespace
```
Summary:
Previously, after applying the mask, a negative number would convert to a
positive number because the sign flag was forgotten. This patch adds two more
shift operations to do the sign extension. This assumes that we're using two's
complement.
This patch applies sign extension unconditionally when loading a unspported integer width, and it relies the pattern to do the casting because the signedness semantic is carried by operator itself.
Differential Revision: https://reviews.llvm.org/D79753
Thanks to a recent change that made `::build` functions take an instance of
`OpBuilder`, it is now possible to build operations within a region attached to
the operation about to be created. Exercise this on `scf::ForOp` by taking a
callback that populates the loop body while the loop is being created.
Additionally, provide helper functions to build perfect nests of `ForOp`s,
with support for iteration arguments. These functions provide the same
functionality as EDSC LoopNestBuilder with simpler implementation, without
relying on edsc::ScopedContext, and using `OpBuilder` in an unambiguous way.
Compatibility functions for EDSC are provided, but may be removed in the
future.
Differential Revision: https://reviews.llvm.org/D79688
Summary:
Vector transfer ops semantic is extended to allow specifying a per-dimension `masked`
attribute. When the attribute is false on a particular dimension, lowering to LLVM emits
unmasked load and store operations.
Differential Revision: https://reviews.llvm.org/D80098
Summary:
This revision makes the use of vector transfer operatons more idiomatic by
allowing to omit and inferring the permutation_map.
Differential Revision: https://reviews.llvm.org/D80092
Generally:
1) don't use target_link_libraries() and add_mlir_library() on the same target, use LINK_LIBS PUBLIC instead.
2) don't use LINK_LIBS to specify LLVM libraries. Use LINK_COMPONENTS instead
3) no need to link against LLVMSupport. We pull it in by default.
Differential Revision: https://reviews.llvm.org/D80076
Summary:
First, compact implementation of lowering to LLVM IR. A bit more
challenging than the constant mask due to the dynamic indices, of course.
I like to hear if there are more efficient ways of doing this in LLVM,
but this for now at least gives us a functional reference implementation.
Reviewers: nicolasvasilache, ftynse, bkramer, reidtatge, andydavis1, mehdi_amini
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79954
The following Conversions are affected: LoopToStandard -> SCFToStandard,
LoopsToGPU -> SCFToGPU, VectorToLoops -> VectorToSCF. Full file paths are
affected. Additionally, drop the 'Convert' prefix from filenames living under
lib/Conversion where applicable.
API names and CLI options for pass testing are also renamed when applicable. In
particular, LoopsToGPU contains several passes that apply to different kinds of
loops (`for` or `parallel`), for which the original names are preserved.
Differential Revision: https://reviews.llvm.org/D79940
have abi attributes.
To ensure there is no conflict, use the default ABI only when none of
the arguments have the spv.interface_var_abi attribute. This also
implies that if one of the arguments has a spv.interface_var_abi
attribute, all of them should have it as well.
Differential Revision: https://reviews.llvm.org/D77232
This revision starts decoupling the include the kitchen sink behavior of Linalg to LLVM lowering by inserting a -convert-linalg-to-std pass.
The lowering of linalg ops to function calls was previously lowering to memref descriptors by having both linalg -> std and std -> LLVM patterns in the same rewrite.
When separating this step, a new issue occurred: the layout is automatically type-erased by this process. This revision therefore introduces memref casts to perform these type erasures explicitly. To connect everything end-to-end, the LLVM lowering of MemRefCastOp is relaxed because it is artificially more restricted than the op semantics. The op semantics already guarantee that source and target MemRefTypes are cast-compatible. An invalid lowering test now becomes valid and is removed.
Differential Revision: https://reviews.llvm.org/D79468
This patch adds `affine.vector_load` and `affine.vector_store` ops to
the Affine dialect and lowers them to `vector.transfer_read` and
`vector.transfer_write`, respectively, in the Vector dialect.
Reviewed By: bondhugula, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D79658
All ops of the SCF dialect now use the `scf.` prefix instead of `loop.`. This
is a part of dialect renaming.
Differential Revision: https://reviews.llvm.org/D79844
The main objective of this revision is to change the way static information is represented, propagated and canonicalized in the SubViewOp.
In the current implementation the issue is that canonicalization may strictly lose information because static offsets are combined in irrecoverable ways into the result type, in order to fit the strided memref representation.
The core semantics of the op do not change but the parser and printer do: the op always requires `rank` offsets, sizes and strides. These quantities can now be either SSA values or static integer attributes.
The result type is automatically deduced from the static information and more powerful canonicalizations (as powerful as the representation with sentinel `?` values allows). Previously static information was inferred on a best-effort basis from looking at the source and destination type.
Relevant tests are rewritten to use the idiomatic `offset: x, strides : [...]`-form. Bugs are corrected along the way that were not trivially visible in flattened strided memref form.
Lowering to LLVM is updated, simplified and now supports all cases.
A mixed static-dynamic mode test that wouldn't previously lower is added.
It is an open question, and a longer discussion, whether a better result type representation would be a nicer alternative. For now, the subview op carries the required semantic.
Differential Revision: https://reviews.llvm.org/D79662
Conversion/ folders were originally intended to store patterns for
DialectA->DialectB conversions that depend on both dialects and do not
conceptually belong to either of the dialects. As such, DialectA->DialectA
conversion does not make sense under Conversion/ and should rather live with
the dialect it operates on.
Differential Revision: https://reviews.llvm.org/D79569
Summary:
This makes a common pattern of
`dyn_cast_or_null<OpTy>(v.getDefiningOp())` more concise.
Differential Revision: https://reviews.llvm.org/D79681
This [discussion](https://llvm.discourse.group/t/viewop-isnt-expressive-enough/991/2) raised some concerns with ViewOp.
In particular, the handling of offsets is incorrect and does not match the op description.
Note that with an elemental type change, offsets cannot be part of the type in general because sizeof(srcType) != sizeof(dstType).
Howerver, offset is a poorly chosen term for this purpose and is renamed to byte_shift.
Additionally, for all intended purposes, trying to support non-identity layouts for this op does not bring expressive power but rather increases code complexity.
This revision simplifies the existing semantics and implementation.
This simplification effort is voluntarily restrictive and acts as a stepping stone towards supporting richer semantics: treat the non-common cases as YAGNI for now and reevaluate based on concrete use cases once a round of simplification occurred.
Differential revision: https://reviews.llvm.org/D79541
This dialect contains various structured control flow operaitons, not only
loops, reflect this in the name. Drop the Ops suffix for consistency with other
dialects.
Note that this only moves the files and changes the C++ namespace from 'loop'
to 'scf'. The visible IR prefix remains the same and will be updated
separately. The conversions will also be updated separately.
Differential Revision: https://reviews.llvm.org/D79578
Complex addition and substraction are the first two binary operations on complex
numbers.
Remaining operations will follow the same pattern.
Differential Revision: https://reviews.llvm.org/D79479
In the Vector to LLVM conversion, the `replaceTransferOp` function calls
into a type converter that may fail and suppresses the status. Change
the function to return the failure status instead, Since it is called
from a pattern, the failure can be readily propagated to the rest of
infrastructure.
Adding this pattern reduces code duplication. There is no need to have a
custom implementation for lowering to llvm.cmpxchg.
Differential Revision: https://reviews.llvm.org/D78753
Portions of MLIR which depend on LLVMIR generally need to depend on
intrinsics_gen, to ensure that tablegen'd header files from LLVM are built
first. Without this, we get errors, typically about llvm/IR/Attributes.inc
not being found.
Note that previously the Linalg Dialect depended on intrinsics_gen, but it
doesn't need to, since it doesn't use LLVMIR.
Differential Revision: https://reviews.llvm.org/D79389
This allows for walking the operations nested directly within a region, without traversing nested regions.
Differential Revision: https://reviews.llvm.org/D79056
Summary:
As D78974, this patch implements the emulation for store op. The emulation is
done with atomic operations. E.g., if the storing value is i8, rewrite the
StoreOp to:
1) load a 32-bit integer
2) clear 8 bits in the loading value
3) store 32-bit value back
4) load a 32-bit integer
5) modify 8 bits in the loading value
6) store 32-bit value back
The step 1 to step 3 are done by AtomicAnd as one atomic step, and the step 4
to step 6 are done by AtomicOr as another atomic step.
Differential Revision: https://reviews.llvm.org/D79272
- Exports MLIR targets to be used out-of-tree.
- mimicks `add_clang_library` and `add_flang_library`.
- Fixes libMLIR.so
After https://reviews.llvm.org/D77515 libMLIR.so was no longer containing
any object files. We originally had a cludge there that made it work with
the static initalizers and when switchting away from that to the way the
clang shlib does it, I noticed that MLIR doesn't create a `obj.{name}` target,
and doesn't export it's targets to `lib/cmake/mlir`.
This is due to MLIR using `add_llvm_library` under the hood, which adds
the target to `llvmexports`.
Differential Revision: https://reviews.llvm.org/D78773
[MLIR] Fix libMLIR.so and LLVM_LINK_LLVM_DYLIB
Primarily, this patch moves all mlir references to LLVM libraries into
either LLVM_LINK_COMPONENTS or LINK_COMPONENTS. This enables magic in
the llvm cmake files to automatically replace reference to LLVM components
with references to libLLVM.so when necessary. Among other things, this
completes fixing libMLIR.so, which has been broken for some configurations
since D77515.
Unlike previously, the pattern is now that mlir libraries should almost
always use add_mlir_library. Previously, some libraries still used
add_llvm_library. However, this confuses the export of targets for use
out of tree because libraries specified with add_llvm_library are exported
by LLVM. Instead users which don't need/can't be linked into libMLIR.so
can specify EXCLUDE_FROM_LIBMLIR
A common error mode is linking with LLVM libraries outside of LINK_COMPONENTS.
This almost always results in symbol confusion or multiply defined options
in LLVM when the same object file is included as a static library and
as part of libLLVM.so. To catch these errors more directly, there's now
mlir_check_all_link_libraries.
To simplify usage of add_mlir_library, we assume that all mlir
libraries depend on LLVMSupport, so it's not necessary to separately specify
it.
tested with:
BUILD_SHARED_LIBS=on,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB + LLVM_LINK_LLVM_DYLIB.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79067
[MLIR] Move from using target_link_libraries to LINK_LIBS
This allows us to correctly generate dependencies for derived targets,
such as targets which are created for object libraries.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79243
Three commits have been squashed to avoid intermediate build breakage.
Add `CreateComplexOp`, `ReOp`, and `ImOp` to the standard dialect.
This is the first step to support complex numbers.
Differential Revision: https://reviews.llvm.org/D79159
Summary:
Maps ZeroExtendIOp and TruncateIOp to spirv::UConvertOp and spirv::SConvertOp.
Depends On D78974
Differential Revision: https://reviews.llvm.org/D79143
Summary:
The current implementation in SPIRVTypeConverter just unconditionally turns
everything into 32-bit if it doesn't meet the requirements of extensions or
capabilities. In this case, we can load a 32-bit value and then do bit
extraction to get the value.
Differential Revision: https://reviews.llvm.org/D78974
- Extract common logic between -convert-gpu-to-nvvm and -convert-gpu-to-rocdl.
- Cope with the fact that alloca operates on different addrspaces between NVVM
and ROCDL.
- Modernize unit tests for ROCDL dialect.
Differential Revision: https://reviews.llvm.org/D79021
Summary:
This revision cleans up a layer of complexity in ScopedContext and uses InsertGuard instead of previously manual bookkeeping.
The method `getBuilder` is renamed to `getBuilderRef` and spurious copies of OpBuilder are tracked.
This results in some canonicalizations not happening anymore in the Linalg matmul to vector test. This test is retired because relying on DRRs for this has been shaky at best. The solution will be better support to write fused passes in C++ with more idiomatic pattern composition and application.
Differential Revision: https://reviews.llvm.org/D79208
This revision allows masked vector transfers with m-D buffers and n-D vectors to
progressively lower to m-D buffer and 1-D vector transfers.
For a vector.transfer_read, assuming a `memref<(leading_dims) x (major_dims) x (minor_dims) x type>` and a `vector<(minor_dims) x type>` are involved in the transfer, this generates pseudo-IR resembling:
```
if (any_of(%ivs_major + %offsets, <, major_dims)) {
%v = vector_transfer_read(
{%offsets_leading, %ivs_major + %offsets_major, %offsets_minor},
%ivs_minor):
memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
vector<(minor_dims) x type>;
} else {
%v = splat(vector<(minor_dims) x type>, %fill)
}
```
Differential Revision: https://reviews.llvm.org/D79062
type operands.
The instructions used to convert std.cmpi cannot have i1 types
according to SPIR-V specification. A different set of operations are
specified in the SPIR-V spec for comparing boolean types. Enhance the
StandardToSPIRV lowering to target these instructions when operands to
std.cmpi operation are of i1 type.
Differential Revision: https://reviews.llvm.org/D79049
On certain targets std.subview should be able to take memrefs from non-zero
addrspaces. Improve lowering logic to llvm dialect and amend the tests.
Differential Revision: https://reviews.llvm.org/D79024
Enhance lowering logic and tests so vector.transfer_read and
vector.transfer_write take memrefs on non-zero addrspaces.
Differential Revision: https://reviews.llvm.org/D79023
OperationHandle mostly existed to mirror the behavior of ValueHandle.
This has become unnecessary and can be retired.
Differential Revision: https://reviews.llvm.org/D78692
As we start defining more complex Ops, we increasingly see the need for
Ops-with-regions to be able to construct Ops within their regions in
their ::build methods. However, these methods only have access to
Builder, and not OpBuilder. Creating a local instance of OpBuilder
inside ::build and using it fails to trigger the operation creation
hooks in derived builders (e.g., ConversionPatternRewriter). In this
case, we risk breaking the logic of the derived builder. At the same
time, OpBuilder::create, which is by far the largest user of ::build
already passes "this" as the first argument, so an OpBuilder instance is
already available.
Update all ::build methods in all Ops in MLIR and Flang to take
"OpBuilder &" instead of "Builder *". Note the change from pointer and
to reference to comply with the common style in MLIR, this also ensures
all other users must change their ::build methods.
Differential Revision: https://reviews.llvm.org/D78713
Summary: This revision extends the lowering of vector transfers to work with n-D memref and 1-D vector where the permutation map is an identity on the most minor dimensions (1 for now).
Differential Revision: https://reviews.llvm.org/D78925
`addArgument()` is not undoable and should not be used in
ConversionPattern, therefore replacing `splitBlock()` with
`createBlock()`, that creates a block with specified args.
Differential Revision: https://reviews.llvm.org/D78731
Summary:
Use a nested symbol to identify the kernel to be invoked by a `LaunchFuncOp` in the GPU dialect.
This replaces the two attributes that were used to identify the kernel module and the kernel within seperately.
Differential Revision: https://reviews.llvm.org/D78551
We also need to lock the LLVMDialect mutex when initializing
LLVM targets or destroying llvm modules concurrently. Added another
scoped lock to that effect.
Differential Revision: https://reviews.llvm.org/D78580
Summary:
Workgroup size is written into the kernel. So to properly modelling
vulkan launch, we have to skip local workgroup size for vulkan launch
call op.
Differential Revision: https://reviews.llvm.org/D78307