I only want to ensure that %offset is non-zero there,
it doesn't matter how that info is conveyed.
As filed in PR43267, the assumption way does not work.
llvm-svn: 371550
I only want to ensure that %offset is non-zero there,
it doesn't matter how that info is conveyed.
As filed in PR43267, the assumption way does not work.
llvm-svn: 371546
The scalar f64 patterns don't work yet because they fail on multiple
results from the unused implicit def of scc in the result bit
operation.
llvm-svn: 371542
Since NaN is very rare in normal programs, so the probability for floating point unordered comparison should be extremely small. Current probability is 3/8, it is too large, this patch changes it to a tiny number.
Differential Revision: https://reviews.llvm.org/D65303
llvm-svn: 371541
f64 doesn't work yet because tablegen currently doesn't handlde
REG_SEQUENCE.
This does regress some multi use VALU fneg cases since now the
immediate remains in an SGPR, and more moves are used for legalizing
the xor. This is a SIFixSGPRCopies deficiency.
llvm-svn: 371540
Summary:
Now that llvm-objdump allows target-specific options, we match the
`no-aliases` and `numeric` options for RISC-V, as supported by GNU objdump.
This is done by overriding the variables used for the command-line options, so
that the command-line options are still supported.
This patch updates all tests using `llvm-objdump -riscv-no-aliases` to use
`llvm-objdump -M no-aliases`.
Reviewers: luismarques, asb
Reviewed By: luismarques, asb
Subscribers: pzheng, hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66139
llvm-svn: 371534
There's still a lot more to do, but this handles decomposing due to
alignment. I've gotten it to the point where nothing crashes or
infinite loops the legalizer.
llvm-svn: 371533
Summary:
This is an option primarily to use during testing. Instead of always
printing registers using their ABI names, this allows a user to request they
are printed with their architectural name.
This is then used in the register constraint tests to ensure the mapping
between architectural and abi names is correct.
Reviewers: asb, luismarques
Reviewed By: asb
Subscribers: pzheng, hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65950
llvm-svn: 371531
The tool reports verbose output for the DWARF debug location coverage.
The llvm-locstats for each variable or formal parameter DIE computes what
percentage from the code section bytes, where it is in scope, it has
location description. The line 0 shows the number (and the percentage) of
DIEs with no location information, but the line 100 shows the number (and
the percentage) of DIEs where there is location information in all code
section bytes (where the variable or parameter is in the scope). The line
50..59 shows the number (and the percentage) of DIEs where the location
information is in between 50 and 59 percentage of its scope covered.
The tool will be very useful for tracking improvements regarding the
"debugging optimized code" support with LLVM ecosystem.
Differential Revision: https://reviews.llvm.org/D66526
llvm-svn: 371520
This allows us to fold fma's that multiply with 0.0. Also, the
multiply by 1.0 case is handled there as well. The fneg/fabs cases
are not handled by SimplifyFMulInst, so we need to keep them.
Reviewers: spatel, anemet, lebedev.ri
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D67351
llvm-svn: 371518
Adding testscases for this via llvm-dwarfdump.
Also add testcases for the existing resolver support for X86.
Differential Revision: https://reviews.llvm.org/D67340
llvm-svn: 371515
The additional fields will be parsed by the llvm-locstats tool in order to
produce more human readable output of the DWARF debug location quality
generated.
Differential Revision: https://reviews.llvm.org/D66525
llvm-svn: 371506
To prevent AArch64 tests from running when the target is not compiled.
Fixes r371502:
/home/buildslave/ps4-buildslave4/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/llvm.src/test/Transforms/ExpandMemCmp/AArch64/memcmp.ll:11:15: error: CHECK-NEXT: expected string not found in input
; CHECK-NEXT: [[TMP0:%.*]] = bitcast i8* [[S1:%.*]] to i64*
llvm-svn: 371503
The address difference between two sections in a PT_LOAD is a constant.
Consider a hypothetical case (pagesize can be very small, say, 4).
```
.text sh_addralign=4
.text.hot sh_addralign=16
```
If we set p_align to 4, the PT_LOAD will be loaded at an address which
is a multiple of 4. The address of .text.hot is guaranteed to be a
multiple of 4, but not necessarily a multiple of 16.
This patch deletes the constraint
if (SHeader->sh_offset == PHeader.p_offset)
Reviewed By: grimar, jhenderson
Differential Revision: https://reviews.llvm.org/D67260
llvm-svn: 371501
This can only happen on X86 when fp128 is a legal type, but we
go through softening to generate libcalls. This causes fp128 to
be softened to fp128 instead of an integer type. This can be
removed if D67128 lands.
llvm-svn: 371493
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
This is an alternative to D66980, which was reverted. Instead of
inserting a pseudo instruction that optionally expands to nothing, add a
pass that inserts int3 when appropriate after basic block layout.
Reviewers: hans
Differential Revision: https://reviews.llvm.org/D67201
llvm-svn: 371466
If we're vectorizing a load in a predicated block, check to see if the load can be speculated rather than predicated. This allows us to generate a normal vector load instead of a masked.load.
To do so, we must prove that all bytes accessed on any iteration of the original loop are dereferenceable, and that all loads (across all iterations) are properly aligned. This is equivelent to proving that hoisting the load into the loop header in the original scalar loop is safe.
Note: There are a couple of code motion todos in the code. My intention is to wait about a day - to be sure this sticks - and then perform the NFC motion without furthe review.
Differential Revision: https://reviews.llvm.org/D66688
llvm-svn: 371452
Motivated by work on changing our representation of unordered atomics in SelectionDAG, but as an aside, all our lowerings for O3 are terrible. Even the ones which ignore the atomicity.
llvm-svn: 371449
This is the first patch in a large sequence. The eventual goal is to have unordered atomic loads and stores - and possibly ordered atomics as well - handled through the normal ISEL codepaths for loads and stores. Today, there handled w/instances of AtomicSDNodes. The result of which is that all transforms need to be duplicated to work for unordered atomics. The benefit of the current design is that it's harder to introduce a silent miscompile by adding an transform which forgets about atomicity. See the thread on llvm-dev titled "FYI: proposed changes to atomic load/store in SelectionDAG" for further context.
Note that this patch is NFC unless the experimental flag is set.
The basic strategy I plan on taking is:
introduce infrastructure and a flag for testing (this patch)
Audit uses of isVolatile, and apply isAtomic conservatively*
piecemeal conservative* update generic code and x86 backedge code in individual reviews w/tests for cases which didn't check volatile, but can be found with inspection
flip the flag at the end (with minimal diffs)
Work through todo list identified in (2) and (3) exposing performance ops
(*) The "conservative" bit here is aimed at minimizing the number of diffs involved in (4). Ideally, there'd be none. In practice, getting it down to something reviewable by a human is the actual goal. Note that there are (currently) no paths which produce LoadSDNode or StoreSDNode with atomic MMOs, so we don't need to worry about preserving any behaviour there.
We've taken a very similar strategy twice before with success - once at IR level, and once at the MI level (post ISEL).
Differential Revision: https://reviews.llvm.org/D66309
llvm-svn: 371441
Handle it the same way as G_BUILD_VECTOR_TRUNC. Arguably only
G_BUILD_VECTOR_TRUNC should be legal for this, but G_BUILD_VECTOR will
probably be more convenient in most cases.
llvm-svn: 371440