The AAPCS ABI is substantially more complicated so that's coming in a separate
patch. For now we can generate correct code for iOS though.
llvm-svn: 294493
This is a follow-up to https://reviews.llvm.org/D29349. It turns out
that NeedUpgradeToDIGlobalVariableExpression is always necessary when
we encountered a version==0 record because it may always be referenced
via a list of globals in a DICompileUnit. My tests weren't good enough
to catch this though. To trigger this case, we need much older bitcode
produced by LLVM around version 3.7.
<rdar://problem/30404262>
Differential Revision: https://reviews.llvm.org/D29693
llvm-svn: 294488
Summary:
LVI is now depth first, which is optimal for iteration strategy in
terms of work per call. However, the way the results get cached means
it can still go very badly N^2 or worse right now. The overdefined
cache is per-block, because LVI wants to try to get different results
for the same name in different blocks (IE solve the problem
PredicateInfo solves). This means even if we discover a value is
overdefined after going very deep, it doesn't cache this information,
causing it to end up trying to rediscover it again and again. The
same is true for values along the way. In practice, overdefined
anywhere should mean overdefined everywhere (this is how, for example,
SCCP works).
Until we get around to reworking the overdefined cache, we need to
limit the worklist size we process. Note that permanently reverting
the DFS strategy exploration seems the wrong strategy (temporarily
seems fine if we really want). BFS is clearly the wrong approach, it
just gets luckier on some testcases. It's also very hard to design
an effective throttle for BFS. For DFS, the throttle is directly related
to the depth of the CFG. So really deep CFGs will get cutoff, smaller
ones will not. As the CFG simplifies, you get better results.
In BFS, the limit is it's related to the fan-out times average block size,
which is harder to reason about or make good choices for.
Bug being filed about the overdefined cache, but it will require major
surgery to fix it (plumbing predicateinfo through CVP or LVI).
Note: I did not make this number configurable because i'm not sure
anyone really needs to tweak this knob. We run CVP 3 times. On the
testcases i have the slow ones happen in the middle, where CVP is
doing cleanup work other things are effective at. Over the course of
3 runs, we don't see to have any real loss of performance.
I haven't gotten a minimized testcase yet, but just imagine in your
head a testcase where, going *up* the CFG, you have branches, one of
which leads 50000 blocks deep, and the other, to something where the
answer is overdefined immediately. BFS would discover the overdefined
faster than DFS, but do more work to do so. In practice, the right
answer is "once DFS discovers overdefined for a value, stop trying to
get more info about that value" (and so, DFS would normally cache the
overdefined results for every value it passed through in those 50k
blocks, and never do that work again. But it don't, because of the
naming problem)
Reviewers: chandlerc, djasper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29715
llvm-svn: 294463
Fixed test.
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294458
I forgot to remove the neonfp target feature from the test, which means we'd
have trouble selecting VADDS on targets that have neonfp enabled by default.
llvm-svn: 294451
It caused undefined behavior in VarLoc. As far as I investigated,
- VarLoc::VarLoc() treats negative offset value as InvalidKind.
Consider the case that (int64_t)MI.getOperand(1).getImm() is negative and whether it satisfies ((uint64_t)Offset < (1ULL << 32)).
- Comparison operators in VarLoc behave undefined since VarLoc::Loc.Hash is uninitialized in case of InvalidKind.
I guess Offset (in VarLoc) could be made aware of signed, but I am not sure.
So I have reverted it for now.
llvm-svn: 294447
A virtual destructor is needed, since the derived classes are stored in
`iplist<PredicateBase> AllInfos;` and, apparently, ilist_node doesn't have a
virtual destructor.
llvm-svn: 294443
Add a register bank for floating point values and select simple instructions
using them (add, copies from GPR).
This assumes that the hardware can cope with a single precision add (VADDS)
instruction, so the legalizer will treat G_FADD as legal and the instruction
selector will refuse to select if the hardware doesn't support it. In the future
we'll want to be more careful about this, and legalize to libcalls if we have to
use soft float.
llvm-svn: 294442
This patch checks the number of operands in the resulting
instruction instead of just the alias, then skips over
tied operands when generating the printing method.
This allows us to generate the preferred assembly syntax
for the AArch64 'ins' instruction, which should always be
displayed as 'mov' according to the ARMARM.
Several unit tests have changed as a result, but only to
reflect the preferred disassembly.
Some other InstAlias patterns (movk/bic/orr) needed a
slight adjustment to stop them becoming the default
and breaking other unit tests.
Patch by Graham Hunter.
Differential Revision: https://reviews.llvm.org/D29219
llvm-svn: 294437
There are about 3 underlying bugs causing the tests to fail.
On top of that, some tests just we're 'generic' enough. i.e. 32-bit
registers.
llvm-svn: 294434
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294433
Disassembly currently begins from addresses obtained from the objects
symbol table. For ELF, add the dynamic symbols to the list if no
static symbols are available so that we can more successfully
disassemble stripped binaries.
Differential Revision: https://reviews.llvm.org/D29632
llvm-svn: 294430
This test is under 'ArgumentPromotion' but there are no arguments that
get promoted in the test case, so there seems to be no point. Also,
there are no assertions about the output at all, so this seems like
something we should just delete given the low value.
llvm-svn: 294428
renaming things to at least have somewhat spelled out names, and even
have meaningful names where I could guess at what they should be.
Also add FileCheck assertions that we're actually doing what we set out
to do for some of the tests, for example not promoting a type that would
result in infinite promotion.
llvm-svn: 294426
Summary:
The Mips target is the only user of mnemonicIsValid. This patch
moves this method from AsmMatcherEmitter.cpp to MipsAsmParser.cpp,
getting rid of the method in all other targets where it generated
warnings about an unused function.
Patch by Gonsolo.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: sdardis
Differential Revision: https://reviews.llvm.org/D28748
llvm-svn: 294400
Summary:
After the DFS order change for LVI, i have a few testcases that now
take forever.
The TL;DR - This is mainly due to the overdefined cache, but that
requires predicateinfo to fix[1]
In order to maximize reuse of the LVI cache for now, change the order
we iterate in.
This reduces my testcase from 5 minutes to 4 seconds.
I have verified cases like gmic do not get slower.
I am playing with whether the order should be postorder or idf.
[1] In practice, overdefined anywhere should be overdefined
everywhere, so this cache should be global. That also fixes this bug.
The problem, however, is that LVI relies on this cache being filled in
per-block because it wants different values in different blocks due to
precisely the naming issue that predicateinfo fixes. With
predicateinfo, making the cache global works fine on individual
passes, and also resolves this issue.
Reviewers: davide, sanjoy, chandlerc
Subscribers: llvm-commits, djasper
Differential Revision: https://reviews.llvm.org/D29679
llvm-svn: 294398