This requires some instructions to be renamed to move the Y earlier in the instruction name. The new names are more consistent with other instructions.
llvm-svn: 295579
This reverts r294348, which removed support for conditional tail calls
due to the PR above. It fixes the PR by marking live registers as
implicitly used and defined by the now predicated tailcall. This is
similar to how IfConversion predicates instructions.
Differential Revision: https://reviews.llvm.org/D29856
llvm-svn: 295262
They are currently modelled incorrectly (as calls, which clobber
registers, confusing e.g. Machine Copy Propagation).
Reverting until we figure out the proper solution.
llvm-svn: 294348
Summary:
This change allows usage of store instruction for implicit null check.
Memory Aliasing Analisys is not used and change conservatively supposes
that any store and load may access the same memory. As a result
re-ordering of store-store, store-load and load-store is prohibited.
Patch by Serguei Katkov!
Reviewers: reames, sanjoy
Reviewed By: sanjoy
Subscribers: atrick, llvm-commits
Differential Revision: https://reviews.llvm.org/D29400
llvm-svn: 294338
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
Summary:
No need to have this per-architecture. While there, unify 32-bit ARM's
behaviour with what changed elsewhere and start function names lowercase
as per the coding standards. Individual entry emission code goes to the
entry's own class.
Fully tested on amd64, cross-builds on both ARMs and PowerPC.
Reviewers: dberris
Subscribers: aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28209
llvm-svn: 290858
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
According to MSDN (see the PR), functions which don't touch any callee-saved
registers (including %rsp) don't need any unwind info.
This patch makes LLVM not emit unwind info for such functions, to save
binary size.
Differential Revision: https://reviews.llvm.org/D24748
llvm-svn: 282185
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
https://reviews.llvm.org/D23932 (Clang test)
https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 281878
This extends the optimization in r280832 to also work for 64-bit. The only
quirk is that we can't do this for 64-bit Windows (yet).
Differential Revision: https://reviews.llvm.org/D24423
llvm-svn: 281113
The REX prefix should be used on indirect jmps, but not direct ones.
For direct jumps, the unwinder looks at the offset to determine if
it's inside the current function.
Differential Revision: https://reviews.llvm.org/D24359
llvm-svn: 281003
And associated commits, as they broke the Thumb bots.
This reverts commit r280935.
This reverts commit r280891.
This reverts commit r280888.
llvm-svn: 280967
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
1. https://reviews.llvm.org/D23932 (Clang test)
2. https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 280888
When branching to a block that immediately tail calls, it is possible to fold
the call directly into the branch if the call is direct and there is no stack
adjustment, saving one byte.
Example:
define void @f(i32 %x, i32 %y) {
entry:
%p = icmp eq i32 %x, %y
br i1 %p, label %bb1, label %bb2
bb1:
tail call void @foo()
ret void
bb2:
tail call void @bar()
ret void
}
before:
f:
movl 4(%esp), %eax
cmpl 8(%esp), %eax
jne .LBB0_2
jmp foo
.LBB0_2:
jmp bar
after:
f:
movl 4(%esp), %eax
cmpl 8(%esp), %eax
jne bar
.LBB0_1:
jmp foo
I don't expect any significant size savings from this (on a Clang bootstrap I
saw 288 bytes), but it does make the code a little tighter.
This patch only does 32-bit, but 64-bit would work similarly.
Differential Revision: https://reviews.llvm.org/D24108
llvm-svn: 280832
Summary:
This change promotes the 'isTailCall(...)' member function to
TargetInstrInfo as a query interface for determining on a per-target
basis whether a given MachineInstr is a tail call instruction. We build
upon this in the XRay instrumentation pass to emit special sleds for
tail call optimisations, where we emit the correct kind of sled.
The tail call sleds look like a mix between the function entry and
function exit sleds. Form-wise, the sled comes before the "jmp"
instruction that implements the tail call similar to how we do it for
the function entry sled. Functionally, because we know this is a tail
call, it behaves much like an exit sled -- i.e. at runtime we may use
the exit trampolines instead of a different kind of trampoline.
A follow-up change to recognise these sleds will be done in compiler-rt,
so that we can start intercepting these initially as exits, but also
have the option to have different log entries to more accurately reflect
that this is actually a tail call.
Reviewers: echristo, rSerge, majnemer
Subscribers: mehdi_amini, dberris, llvm-commits
Differential Revision: https://reviews.llvm.org/D23986
llvm-svn: 280334
Without the synthesized reference to a symbol in the xray_instr_map,
linker section garbage collection will helpfully remove the whole
xray_instr_map section from the final executable (or archive). This will
cause the runtime to not be able to identify the sleds and hot-patch the
calls/jumps into the runtime trampolines.
This change adds a reference from the text section at the end of the
function to keep around the associated xray_instr_map section as well.
We also make sure that we catch this reference in the test.
Reviewers: chandlerc, echristo, majnemer, mehdi_amini
Subscribers: mehdi_amini, llvm-commits, dberris
Differential Revision: https://reviews.llvm.org/D23398
llvm-svn: 279204
This makes a trivial change in the emission of the per-function XRay
tables, and makes sure that the xray_instr_map section does show up in
the object file.
llvm-svn: 278113
This should ensure that we can atomically write two bytes (on top of the
retq and the one past it) and have those two bytes not straddle cache
lines.
We also move the label past the alignment instruction so that we can refer
to the actual first instruction, as opposed to potential padding before the
aligned instruction.
Update the tests to allow us to reflect the new order of assembly.
Reviewers: rSerge, echristo, majnemer
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23101
llvm-svn: 277701
Summary:
We also add a test to show what currently happens when we create a
section per function and emit an xray_instr_map. This illustrates the
relationship (or lack thereof) between the per-function section and the
xray_instr_map section.
We also change the code generation slightly so that we don't always
create group sections, but rather only do so if a function where the
table is associated with is in a group.
Also in this change:
- Remove the "merge" flag on the xray_instr_map section.
- Test that we're generating the right table for comdat and non-comdat functions.
Reviewers: echristo, majnemer
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23104
llvm-svn: 277580
Summary:
In this patch we implement the following parts of XRay:
- Supporting a function attribute named 'function-instrument' which currently only supports 'xray-always'. We should be able to use this attribute for other instrumentation approaches.
- Supporting a function attribute named 'xray-instruction-threshold' used to determine whether a function is instrumented with a minimum number of instructions (IR instruction counts).
- X86-specific nop sleds as described in the white paper.
- A machine function pass that adds the different instrumentation marker instructions at a very late stage.
- A way of identifying which return opcode is considered "normal" for each architecture.
There are some caveats here:
1) We don't handle PATCHABLE_RET in platforms other than x86_64 yet -- this means if IR used PATCHABLE_RET directly instead of a normal ret, instruction lowering for that platform might do the wrong thing. We think this should be handled at instruction selection time to by default be unpacked for platforms where XRay is not availble yet.
2) The generated section for X86 is different from what is described from the white paper for the sole reason that LLVM allows us to do this neatly. We're taking the opportunity to deviate from the white paper from this perspective to allow us to get richer information from the runtime library.
Reviewers: sanjoy, eugenis, kcc, pcc, echristo, rnk
Subscribers: niravd, majnemer, atrick, rnk, emaste, bmakam, mcrosier, mehdi_amini, llvm-commits
Differential Revision: http://reviews.llvm.org/D19904
llvm-svn: 275367
Avoid implicit conversions from MachineInstrBundleIterator to
MachineInstr*, mainly by preferring MachineInstr& over MachineInstr* and
using range-based for loops.
llvm-svn: 275149
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
llvm-svn: 272126
Since r207518 they are printed exactly like non-hidden stubs on x86 and
since r207517 on ARM.
This means we can use a single set for all stubs in those platforms.
llvm-svn: 269776
This operation may branch to the handler block and we do not want it
to happen anywhere within the basic block.
Moreover, by marking it "terminator and branch" the machine verifier
does not wrongly assume (because of AnalyzeBranch not knowing better)
the branch is analyzable. Indeed, the target was seeing only the
unconditional branch and not the faulting load op and thought it was
a simple unconditional block.
The machine verifier was complaining because of that and moreover,
other optimizations could have done wrong transformation!
In the process, simplify the representation of the handler block in
the faulting load op. Now, we directly reference the handler block
instead of using a label. This has the benefits of:
1. MC knows how to issue a label for a BB, so leave that to it.
2. Accessing the target BB from its label is painful, whereas it is
direct from a MBB operand.
Note: The 2 bytes offset in implicit-null-check.ll comes from the
fact the unconditional jumps are not removed anymore, as the whole
terminator sequence is not analyzable anymore.
Will fix it in a subsequence commit.
llvm-svn: 268327
Summary:
The `"patchable-function"` attribute can be used by an LLVM client to
influence LLVM's code generation in ways that makes the generated code
easily patchable at runtime (for instance, to redirect control).
Right now only one patchability scheme is supported,
`"prologue-short-redirect"`, but this can be expanded in the future.
Reviewers: joker.eph, rnk, echristo, dberris
Subscribers: joker.eph, echristo, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19046
llvm-svn: 266715
This patch adds support for decoding XOP VPPERM instruction when it represents a basic shuffle.
The mask decoding required the existing MCInstrLowering code to be updated to support binary shuffles - the implementation now matches what is done in X86InstrComments.cpp.
Differential Revision: http://reviews.llvm.org/D18441
llvm-svn: 265874
I missed == and != when I removed implicit conversions between iterators
and pointers in r252380 since they were defined outside ilist_iterator.
Since they depend on getNodePtrUnchecked(), they indirectly rely on UB.
This commit removes all uses of these operators. (I'll delete the
operators themselves in a separate commit so that it can be easily
reverted if necessary.)
There should be NFC here.
llvm-svn: 261498