- Explain the use of the _MM_SHUFFLE and _MM_SHUFFLE2 macros
- Update some doxygen parameter descriptions to match the implementations
- Add "see also" doxygen tags to some intrinsics
- Minor clang-format changes
Reviewers: RKSimon
Differential Revision: https://reviews.llvm.org/D124469
D111985 added the generic `__builtin_elementwise_max` and `__builtin_elementwise_min` intrinsics with the same integer behaviour as the SSE/AVX instructions
This patch removes the `__builtin_ia32_pmax/min` intrinsics and just uses `__builtin_elementwise_max/min` - the existing tests see no changes:
```
__m256i test_mm256_max_epu32(__m256i a, __m256i b) {
// CHECK-LABEL: test_mm256_max_epu32
// CHECK: call <8 x i32> @llvm.umax.v8i32(<8 x i32> %{{.*}}, <8 x i32> %{{.*}})
return _mm256_max_epu32(a, b);
}
```
This requires us to add a `__v64qs` explicitly signed char vector type (we already have `__v16qs` and `__v32qs`).
Sibling patch to D117791
Differential Revision: https://reviews.llvm.org/D117798
D111985 added the generic `__builtin_elementwise_max` and `__builtin_elementwise_min` intrinsics with the same integer behaviour as the SSE/AVX instructions
This patch removes the `__builtin_ia32_pmax/min` intrinsics and just uses `__builtin_elementwise_max/min` - the existing tests see no changes:
```
__m256i test_mm256_max_epu32(__m256i a, __m256i b) {
// CHECK-LABEL: test_mm256_max_epu32
// CHECK: call <8 x i32> @llvm.umax.v8i32(<8 x i32> %{{.*}}, <8 x i32> %{{.*}})
return _mm256_max_epu32(a, b);
}
```
This requires us to add a `__v64qs` explicitly signed char vector type (we already have `__v16qs` and `__v32qs`).
Sibling patch to D117791
Differential Revision: https://reviews.llvm.org/D117798
d8faf03807 implemented general-regs-only for X86 by disabling all features
with vector instructions. But the CRC32 instruction in SSE4.2 ISA, which uses
only GPRs, also becomes unavailable. This patch adds a CRC32 feature for this
instruction and allows it to be used with general-regs-only.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D105462
Previously we just used {}, but that doesn't work in situations
like this.
if (1)
_MM_EXTRACT_FLOAT(d, x, n);
else
...
The semicolon would terminate the if.
This covers the SSE and AVX/AVX2 headers. AVX512 has a lot more macros
due to rounding mode.
Fixes part of PR51324.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D107843
Summary:
These all had somewhat custom file headers with different text from the
ones I searched for previously, and so I missed them. Thanks to Hal and
Kristina and others who prompted me to fix this, and sorry it took so
long.
Reviewers: hfinkel
Subscribers: mcrosier, javed.absar, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60406
llvm-svn: 357941
This is part of an ongoing attempt at making 512 bit vectors illegal in the X86 backend type legalizer due to CPU frequency penalties associated with wide vectors on Skylake Server CPUs. We want the loop vectorizer to be able to emit IR containing wide vectors as intermediate operations in vectorized code and allow these wide vectors to be legalized to 256 bits by the X86 backend even though we are targetting a CPU that supports 512 bit vectors. This is similar to what happens with an AVX2 CPU, the vectorizer can emit wide vectors and the backend will split them. We want this splitting behavior, but still be able to use new Skylake instructions that work on 256-bit vectors and support things like masking and gather/scatter.
Of course if the user uses explicit vector code in their source code we need to not split those operations. Especially if they have used any of the 512-bit vector intrinsics from immintrin.h. And we need to make it so that merely using the intrinsics produces the expected code in order to be backwards compatible.
To support this goal, this patch adds a new IR function attribute "min-legal-vector-width" that can indicate the need for a minimum vector width to be legal in the backend. We need to ensure this attribute is set to the largest vector width needed by any intrinsics from immintrin.h that the function uses. The inliner will be reponsible for merging this attribute when a function is inlined. We may also need a way to limit inlining in the future as well, but we can discuss that in the future.
To make things more complicated, there are two different ways intrinsics are implemented in immintrin.h. Either as an always_inline function containing calls to builtins(can be target specific or target independent) or vector extension code. Or as a macro wrapper around a taget specific builtin. I believe I've removed all cases where the macro was around a target independent builtin.
To support the always_inline function case this patch adds attribute((min_vector_width(128))) that can be used to tag these functions with their vector width. All x86 intrinsic functions that operate on vectors have been tagged with this attribute.
To support the macro case, all x86 specific builtins have also been tagged with the vector width that they require. Use of any builtin with this property will implicitly increase the min_vector_width of the function that calls it. I've done this as a new property in the attribute string for the builtin rather than basing it on the type string so that we can opt into it on a per builtin basis and avoid any impact to target independent builtins.
There will be future work to support vectors passed as function arguments and supporting inline assembly. And whatever else we can find that isn't covered by this patch.
Special thanks to Chandler who suggested this direction and reviewed a preview version of this patch. And thanks to Eric Christopher who has had many conversations with me about this issue.
Differential Revision: https://reviews.llvm.org/D48617
llvm-svn: 336583
Previously we were just using extended vector operations in the header file.
This unfortunately allowed non-constant indices to be used with the intrinsics. This is incompatible with gcc, icc, and MSVC. It also introduces a different performance characteristic because non-constant index gets lowered to a vector store and an element sized load.
By adding the builtins we can check for the index to be a constant and ensure its in range of the vector element count.
User code still has the option to use extended vector operations themselves if they need non-constant indexing.
llvm-svn: 334057
I think this is a holdover from when we used to declare variables inside the macros. And then its been copy and pasted forward for years every time a new macro intrinsic gets added.
Interestingly this caused some tests for IRGen to be slightly more optimized. We now return a zeroinitializer directly instead of going through a store+load.
It also removed a bogus error message on another test.
llvm-svn: 333613
(1) I added some \see cross-references to a few select intrinsics that are related (and have the same or similar semantics).
(2) pmmintrin.h, smmintrin.h, xmmintrin.h have very few minor formatting changes. They make rendering of our intrinsics documentation better.
llvm-svn: 333065
Summary:
These look to be a couple things that weren't removed when we switched to target attribute.
The popcnt makes including just smmintrin.h also include popcntintrin.h. The popcnt file itself already contains target attrributes.
The prefetch ones are just wrappers around __builtin_prefetch which we have graceful fallbacks for in the backend if the exact instruction isn't available. So there's no reason to hide them. And it makes them available in functions that have the write target attribute but not a -march command line flag.
Reviewers: echristo, RKSimon, spatel, DavidKreitzer
Reviewed By: echristo
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47029
llvm-svn: 332830
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
- Fix formatting issue due to hyphenated terms at line breaks.
- Fix typo
This patch was made by Craig Flores
Differential Revision: https://reviews.llvm.org/D41520
llvm-svn: 321671
Separated very long brief sections into two sections.
I got an OK from Eric Christopher to commit doxygen comments without prior code
review upstream.
llvm-svn: 303031
- To be consistent with the rest of the intrinsics headers, I removed the tags <i> .. </i> for marking instruction names in italics in in smmintrin.h.
- Formatting changes to fit into 80 characters.
I got an OK from Eric Christopher to commit doxygen comments without prior code
review upstream.
llvm-svn: 300578
MOVNTDQA non-temporal aligned vector loads can be correctly represented using generic builtin loads, allowing us to remove the existing x86 intrinsics.
LLVM companion patch: D31767.
Differential Revision: https://reviews.llvm.org/D31766
llvm-svn: 300326
I made some small changes in smmintrin.h and emmintrin.h intrinsics.
- changed some regular comments '//' into doxygen-style comments '///' where necessary
- removed some trailing spaces in doxygen comments.
I got an OK from Eric Christopher to commit doxygen comments without prior code
review upstream.
llvm-svn: 298371
Note: The doxygen comments are automatically generated based on Sony's intrinsic
s document.
I got an OK from Eric Christopher to commit doxygen comments without prior code
review upstream.
llvm-svn: 295404
This is really only needed for addition, subtraction, and multiplication, but I did the bitwise ops too for overall consistency. Clang currently doesn't set NSW for signed vector operations so the undefined behavior shouldn't happen today.
llvm-svn: 271778
As discussed on http://reviews.llvm.org/D20684, move the unsigned integer vector types used for zero extension to make them available for general use.
llvm-svn: 271187
The VPMOVSX and (V)PMOVZX sign/zero extension intrinsics can be safely represented as generic __builtin_convertvector calls instead of x86 intrinsics.
This patch removes the clang builtins and their use in the sse2/avx headers - a companion patch will remove/auto-upgrade the llvm intrinsics.
Note: We already did this for SSE41 PMOVSX sometime ago.
Differential Revision: http://reviews.llvm.org/D20684
llvm-svn: 271106
test that our intrinsics behave the same under -fsigned-char and
-funsigned-char.
This further testing uncovered that AVX-2 has a broken cmpgt for 8-bit
elements, and has for a long time. This is fixed in the same way as
SSE4 handles the case.
The other ISA extensions currently work correctly because they use
specific instruction intrinsics. As soon as they are rewritten in terms
of generic IR, they will need to add these special casts. I've added the
necessary testing to catch this however, so we shouldn't have to chase
it down again.
I considered changing the core typedef to be signed, but that seems like
a bad idea. Notably, it would be an ABI break if anyone is reaching into
the innards of the intrinsic headers and passing __v16qi on an API
boundary. I can't be completely confident that this wouldn't happen due
to a macro expanding in a lambda, etc., so it seems much better to leave
it alone. It also matches GCC's behavior exactly.
A fun side note is that for both GCC and Clang, -funsigned-char really
does change the semantics of __v16qi. To observe this, consider:
% cat x.cc
#include <smmintrin.h>
#include <iostream>
int main() {
__v16qi a = { 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
__v16qi b = _mm_set1_epi8(-1);
std::cout << (int)(a / b)[0] << ", " << (int)(a / b)[1] << '\n';
}
% clang++ -o x x.cc && ./x
-1, 1
% clang++ -funsigned-char -o x x.cc && ./x
0, 1
However, while this may be surprising, both Clang and GCC agree.
Differential Revision: http://reviews.llvm.org/D13324
llvm-svn: 249097
recently when we started using direct conversion to model sign
extension. The __v16qi type we use for SSE v16i8 vectors is defined in
terms of 'char' which may or may not be signed! This causes us to
generate pmovsx and pmovzx depending on the setting of -funsigned-char.
This patch just forms an explicitly signed type and uses that to
formulate the sign extension. While this gets the correct behavior
(which we now verify with the enhanced test) this is just the tip of the
ice berg. Now that I know what to look for, I have found errors of this
sort *throughout* our vector code. Fortunately, this is the only
specific place where I know of users actively having their code
miscompiled by Clang due to this, so I'm keeping the fix for those users
minimal and targeted.
I'll be sending a proper email for discussion of how to fix these
systematically, what the implications are, and just how widely broken
this is... From what I can tell, we have never shipped a correct set of
builtin headers for x86 when users rely on -funsigned-char. Oops.
llvm-svn: 248980
128-bit vector integer sign extensions correctly lower to the pmovsx instructions even for debug builds.
This patch removes the builtins and reimplements the _mm_cvtepi*_epi* intrinsics __using builtin_shufflevector (to extract the bottom most subvector) and __builtin_convertvector (to actually perform the sign extension).
Differential Revision: http://reviews.llvm.org/D12835
llvm-svn: 248092
This involved removing the conditional inclusion and replacing them
with target attributes matching the original conditional inclusion
and checks. The testcase update removes the macro checks for each
file and replaces them with usage of the __target__ attribute, e.g.:
int __attribute__((__target__(("sse3")))) foo(int a) {
_mm_mwait(0, 0);
return 4;
}
This usage does require the enclosing function have the requisite
__target__ attribute for inlining and code generation - also for
any macro intrinsic uses in the enclosing function. There's no change
for existing uses of the intrinsic headers.
llvm-svn: 239883
Summary:
Most of the clang header patch by Simon Pilgrim @ SCEE.
Also fixed (or added) clang tests for these intrinsics.
LLVM tests to make sure we get the blend instruction out of these
shufflevectors are at http://reviews.llvm.org/D3600
Reviewers: eli.friedman, craig.topper, rafael
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D3601
llvm-svn: 208664
Several of the intrinsic headers were using plain non-reserved identifiers.
C++11 17.6.4.3.2 [global.names] p1 reservers names containing a double
begining with an underscore followed by an uppercase letter for any use.
I think I got them all, but open to being corrected. For the most part I
didn't bother updating function-like macro parameter names because I don't
believe they're subject to any such collission - though some function-like
macros already follow this convention (I didn't update them in part because
the churn was more significant as several function-like macros use the double
underscore prefixed version of the same name as a parameter in their
implementation)
llvm-svn: 172666