This patch replaces RuntimeDyld::SymbolInfo with JITSymbol: A symbol class
that is capable of lazy materialization (i.e. the symbol definition needn't be
emitted until the address is requested). This can be used to support common
and weak symbols in the JIT (though this is not implemented in this patch).
For consistency, RuntimeDyld::SymbolResolver is renamed to JITSymbolResolver.
For space efficiency a new class, JITEvaluatedSymbol, is introduced that
behaves like the old RuntimeDyld::SymbolInfo - i.e. it is just a pair of an
address and symbol flags. Instances of JITEvaluatedSymbol can be used in
symbol-tables to avoid paying the space cost of the materializer.
llvm-svn: 277386
a good error message to be produced.
This is nearly the last libObject interface that used ErrorOr and the last one
that appears in llvm/include/llvm/Object/MachO.h . For Mach-O objects this is
just a clean up because it’s version of getSymbolAddress() can’t return an
error.
I will leave it to the experts on COFF and ELF to actually add meaning full
error messages in their tests if they wish. And also leave it to these experts
to change the last two ErrorOr interfaces in llvm/include/llvm/Object/ObjectFile.h
for createCOFFObjectFile() and createELFObjectFile() if they wish.
Since there are no test cases for COFF and ELF error cases with respect to
getSymbolAddress() in the test suite this is no functional change (NFC).
llvm-svn: 273701
looking for it along $PATH. This allows installs of LLVM tools outside of
$PATH to find the symbolizer and produce pretty backtraces if they crash.
llvm-svn: 272232
Produce another specific error message for a malformed Mach-O file when a symbol’s
section index is more than the number of sections. The existing test case in test/Object/macho-invalid.test
for macho-invalid-section-index-getSectionRawName now reports the error with the message indicating
that a symbol at a specific index has a bad section index and that bad section index value.
Again converting interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. Where the existing code reported the error with a
string message or an error code it was converted to do the same.
Also there some were bugs in the existing code that did not deal with the
old ErrorOr<> return values. So now with Expected<> since they must be
checked and the error handled, I added a TODO and a comment:
"// TODO: Actually report errors helpfully" and a call something like
consumeError(NameOrErr.takeError()) so the buggy code will not crash
since needed to deal with the Error.
llvm-svn: 268298
Produce another specific error message for a malformed Mach-O file when a symbol’s
string index is past the end of the string table. The existing test case in test/Object/macho-invalid.test
for macho-invalid-symbol-name-past-eof now reports the error with the message indicating
that a symbol at a specific index has a bad sting index and that bad string index value.
Again converting interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. Where the existing code reported the error with a
string message or an error code it was converted to do the same. There is some
code for this that could be factored into a routine but I would like to leave that for
the code owners post-commit to do as they want for handling an llvm::Error. An
example of how this could be done is shown in the diff in
lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h which had a Check() routine
already for std::error_code so I added one like it for llvm::Error .
Also there some were bugs in the existing code that did not deal with the
old ErrorOr<> return values. So now with Expected<> since they must be
checked and the error handled, I added a TODO and a comment:
“// TODO: Actually report errors helpfully” and a call something like
consumeError(NameOrErr.takeError()) so the buggy code will not crash
since needed to deal with the Error.
Note there fixes needed to lld that goes along with this that I will commit right after this.
So expect lld not to built after this commit and before the next one.
llvm-svn: 266919
Produce the first specific error message for a malformed Mach-O file describing
the problem instead of the generic message for object_error::parse_failed of
"Invalid data was encountered while parsing the file”. Many more good error
messages will follow after this first one.
This is built on Lang Hames’ great work of adding the ’Error' class for
structured error handling and threading Error through MachOObjectFile
construction. And making createMachOObjectFile return Expected<...> .
So to to get the error to the llvm-obdump tool, I changed the stack of
these methods to also return Expected<...> :
object::ObjectFile::createObjectFile()
object::SymbolicFile::createSymbolicFile()
object::createBinary()
Then finally in ParseInputMachO() in MachODump.cpp the error can
be reported and the specific error message can be printed in llvm-objdump
and can be seen in the existing test case for the existing malformed binary
but with the updated error message.
Converting these interfaces to Expected<> from ErrorOr<> does involve
touching a number of places. To contain the changes for now use of
errorToErrorCode() and errorOrToExpected() are used where the callers
are yet to be converted.
Also there some were bugs in the existing code that did not deal with the
old ErrorOr<> return values. So now with Expected<> since they must be
checked and the error handled, I added a TODO and a comment:
“// TODO: Actually report errors helpfully” and a call something like
consumeError(ObjOrErr.takeError()) so the buggy code will not crash
since needed to deal with the Error.
Note there is one fix also needed to lld/COFF/InputFiles.cpp that goes along
with this that I will commit right after this. So expect lld not to built
after this commit and before the next one.
llvm-svn: 265606
in the test suite. While this is not really an interesting tool and option to run
on a Mach-O file to show the symbol table in a generic libObject format
it shouldn’t crash.
The reason for the crash was in MachOObjectFile::getSymbolType() when it was
calling MachOObjectFile::getSymbolSection() without checking its return value
for the error case.
What makes this fix require a fair bit of diffs is that the method getSymbolType() is
in the class ObjectFile defined without an ErrorOr<> so I needed to add that all
the sub classes. And all of the uses needed to be updated and the return value
needed to be checked for the error case.
The MachOObjectFile version of getSymbolType() “can” get an error in trying to
come up with the libObject’s internal SymbolRef::Type when the Mach-O symbol
symbol type is an N_SECT type because the code is trying to select from the
SymbolRef::ST_Data or SymbolRef::ST_Function values for the SymbolRef::Type.
And it needs the Mach-O section to use isData() and isBSS to determine if
it will return SymbolRef::ST_Data.
One other possible fix I considered is to simply return SymbolRef::ST_Other
when MachOObjectFile::getSymbolSection() returned an error. But since in
the past when I did such changes that “ate an error in the libObject code” I
was asked instead to push the error out of the libObject code I chose not
to implement the fix this way.
As currently written both the COFF and ELF versions of getSymbolType()
can’t get an error. But if isReservedSectionNumber() wanted to check for
the two known negative values rather than allowing all negative values or
the code wanted to add the same check as in getSymbolAddress() to use
getSection() and check for the error then these versions of getSymbolType()
could return errors.
At the end of the day the error printed now is the generic “Invalid data was
encountered while parsing the file” for object_error::parse_failed. In the
future when we thread Lang’s new TypedError for recoverable error handling
though libObject this will improve. And where the added // Diagnostic(…
comment is, it would be changed to produce and error message
like “bad section index (42) for symbol at index 8” for this case.
llvm-svn: 264187
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Summary:
For relocation types that are known to not require stub functions, there
is no need to allocate extra space for the stub functions.
Reviewers: lhames, reames, maksfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14676
llvm-svn: 253920
Now that setExecutable() changed to do all the ground work to make
memory executable on the host, we can remove all (redundant) calls
to invalidate instruction cache here.
As an added bonus, this makes invalidateInstructionCache() dead
code, so it can be removed.
Differential Revision: http://reviews.llvm.org/D13631
llvm-svn: 253343
This commit introduces an option, --preallocate, so that we can get memory
upfront and use it in small memory model tests (in order to get
reliable results).
Differential Revision: http://reviews.llvm.org/D13630
llvm-svn: 250956
TrivialMemoryManager currently doesn't check the return type of AllocateRWX --
and returns a 'null' MemoryBlock to its caller. As pointed out by Lang,
this exposes some serious issues with the MemoryManager interface. There's,
in fact, no way to report back an error to clients rather than aborting in
case memory can't be allocated. Eventually the interface will grow to support
this, but for now, fail sooner rather than later.
Differential Revision: http://reviews.llvm.org/D13627
llvm-svn: 250350
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247683
Requested by Eugene Rozenfeld of the LLILC team, this feature allows JIT
clients to skip relocations for selected external symbols by returning ~0ULL
from their symbol resolver. If this value is returned for a given symbol,
RuntimeDyld will skip all relocations for that symbol. The client will be
responsible for applying the skipped relocations manually before the code
is executed.
llvm-svn: 241383
This function can really fail since the string table offset can be out of
bounds.
Using ErrorOr makes sure the error is checked.
Hopefully a lot of the boilerplate code in tools/* can go away once we have
a diagnostic manager in Object.
llvm-svn: 241297
This is still a really odd function. Most calls are in object format specific
contexts and should probably be replaced with a more direct query, but at least
now this is not too obnoxious to use.
llvm-svn: 240777
On ELF that was already the case since getting the size of a symbol
never fails.
On MachO and COFF we could fail trying to get the section of a symbol. But
we don't really need the section, just the section number to know if two
symbols are in the same section or not.
llvm-svn: 240580
This patch adds the -mcpu= option to llvm-rtdyld. With this option, one
can test relocations for different types of CPUs (e.g. Mips64r6).
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D10503
llvm-svn: 240477
llvm-rtdyld was relying on the default memory manager's EH frame registration,
which is host-dependent rather than target-dependent. As a result, big-endian
ELF Mips EH frames were being registered on OS X (and elsewhere). This is a
really bad idea.
llvm-svn: 238951
This commit adds partial support for MachO relocations to RelocVisitor.
A simple test case is added to show that relocations are indeed being
applied and that using llvm-dwarfdump on MachO files no longer errors.
Correctness is not yet tested, due to an unrelated bug in DebugInfo,
which will be fixed with appropriate testcase in a followup commit.
Differential Revision: http://reviews.llvm.org/D8148
llvm-svn: 238663
Summary:
This supersedes http://reviews.llvm.org/D4010, hopefully properly
dealing with the JIT case and also adds an actual test case.
DwarfContext was basically already usable for the JIT (and back when
we were overwriting ELF files it actually worked out of the box by
accident), but in order to resolve relocations correctly it needs
to know the load address of the section.
Rather than trying to get this out of the ObjectFile or requiring
the user to create a new ObjectFile just to get some debug info,
this adds the capability to pass in that info directly.
As part of this I separated out part of the LoadedObjectInfo struct
from RuntimeDyld, since it is now required at a higher layer.
Reviewers: lhames, echristo
Reviewed By: echristo
Subscribers: vtjnash, friss, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D6961
llvm-svn: 237961
This will enable us to create a PDBContext so as to expose some
amount of debug info functionality through a common interace.
Differential Revision: http://reviews.llvm.org/D9205
Reviewed by: Alexey Samsonov
llvm-svn: 235612
MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
llvm-svn: 233509