This commit handles cases where the size qualifier of an indirect memory reference operand in Intel syntax is missing (e.g. "vaddps xmm1, xmm2, [a]").
GCC will deduce the size qualifier for AVX512 vector and broadcast memory operands based on the possible matches:
"vaddps xmm1, xmm2, [a]" matches only “XMMWORD PTR” qualifier.
"vaddps xmm1, xmm2, [a]{1to4}" matches only “DWORD PTR” qualifier.
This is different from the current behavior of LLVM, which deduces the size qualifier based on the size of the memory operand.
For "vaddps xmm1, xmm2, [a]"
"char a;" will imply "BYTE PTR" qualifier
"short a;" will imply "WORD PTR" qualifier.
This commit aligns LLVM to GCC’s behavior.
This is the LLVM part of the review.
The Clang part of the review: https://reviews.llvm.org/D26587
Differential Revision: https://reviews.llvm.org/D26586
llvm-svn: 287630
Drop instructions that do not influence the memory impact of a basic block.
They are not needed to reproduce the original bug (verified) and will cause
random test noise if we would decide to only model the instructions that
have visible side-effects.
llvm-svn: 287626
Add two store instructions at the end of basic blocks that are required to
reproduce the original bug to ensure we always process and model these basic
blocks. This makes this test case stable even in case we would decide to bail
out early of basic blocks which do not modify the global state. Also add
additional check lines to verify how we model the basic block.
llvm-svn: 287625
There were several cases in X86 where we were unable to fully factor a ScopeMatcher but created nested ScopeMatchers for some portions of it. Then we created a SwitchType that split it up and further factored it so that we ended up with something like this:
SwitchType
Scope
Scope
Sequence of matchers
Some other sequence of matchers
EndScope
Another sequence of matchers
EndScope
...Next type
This change turns it into this:
SwitchType
Scope
Sequence of matchers
Some other sequence of matchers
Another sequence of matchers
EndScope
...Next type
Several other in-tree targets had similar nested scopes like this. Overall this doesn't save many bytes, but makes the isel output a little more regular.
llvm-svn: 287624
We add CHECK lines to this test case to make it easier to see the difference
between affine and non-affine memory accesses. We also change the test case to
use a parameteric index expression as otherwise our range analysis will
understand that the non-affine memory access can only access input[1],
which makes it difficult to see that the memory access is in-fact modeled as
non-affine access.
llvm-svn: 287623
I'm sure this caused the load size to misprint in Intel syntax output. We were also inconsistent about which patterns used which instruction between VEX and EVEX.
There are two different reg/reg versions of movq, one from a GPR and one from the lower 64-bits of an XMM register. This changes the loading folding table to use the single i64mem memory form for folding both cases. But we need to use TB_NO_REVERSE to prevent a duplicate entry in the unfolding table.
llvm-svn: 287622
Summary:
The index and one of the table operands can be swapped by changing the opcode to the other version. Neither of these operands are the one that can load from memory so this can't be used to increase memory folding opportunities.
We need to handle the unmasked forms and the kz forms. Since the load operand isn't being commuted we can commute the load and broadcast instructions too.
Reviewers: igorb, delena, Ayal, Farhana, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25652
llvm-svn: 287621
We would attempt to access the symbol section without ensuring that the symbol
was not absolute. When the assembler referenced relocation is not evaluated to
the absolute, but when we record the relocation, we would query the section.
Because the symbol is absolute, it does not have a section associated with it,
triggering an assertion. Just be more careful about the access of the section.
Addresses PR31064!
llvm-svn: 287619
Because in case of unions we currently default-bind compound values in the
store, this quick fix avoids the crash for this case.
Patch by Ilya Palachev and independently by Alexander Shaposhnikov!
Differential Revision: https://reviews.llvm.org/D26442
llvm-svn: 287618
Summary:
Shuffle lowering widens the element size of a shuffle if elements are contiguous. This is sometimes help because wider element types have more shuffle options. If the shuffle is one of the arguments to a vselect this shuffle widening can introduce a bitcast between the vselect and the shuffle. This will prevent isel from selecting a masked operation. If the shuffle can be written equally efficiently with a different element size to match the vselect type we should change the shuffle type to allow masking.
This patch does this conversion for all VALIGND/VALIGNQ sizes. It also supports turning 128-bit PALIGNR into VALIGND/VALIGNQ. This fixes the case shown in PR31018.
I plan to add support for more operations in future patches.
Reviewers: RKSimon, zvi, delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26902
llvm-svn: 287612
Some synthetic sections are not derived calsses of SyntehticSection.
They are derived directly from InputSection. For consistencly, we should
use SyntheticSection.
llvm-svn: 287606
This is needed because whether the constructor is deleted can control whether
we pass structs by value directly.
To fix this properly we probably want a more direct way for CodeGen to ask
whether the constructor was deleted.
Fixes PR31049.
Differential Revision: https://reviews.llvm.org/D26822
llvm-svn: 287600
The long-term goal here is to get rid of the functions
GetArgumentAtIndex() and GetQuoteCharAtIndex(), instead
replacing them with operator based access and range-based for
enumeration. There are a lot of callsites, though, so the
changes will be done incrementally, starting with this one.
Differential Revision: https://reviews.llvm.org/D26883
llvm-svn: 287597
A target intrinsic may be defined as possibly reading memory,
but the call site may have additional knowledge that it doesn't read
memory. The intrinsic lowering will expect the pessimistic
assumption of the intrinsic definition, so the chain should
still be used.
llvm-svn: 287593
Summary:
When searching for load/store instructions to pair/merge don't treat
writes to WZR/XZR as clobbers since they don't change the value read
from WZR/XZR (which is always 0).
Reviewers: mcrosier, junbuml, jmolloy, t.p.northover
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D26921
llvm-svn: 287592
Summary:
Previously, CGP would unconditionally sink addrspacecast instructions,
even going so far as to sink them into a loop.
Now we check that the cast is "cheap", as defined by TLI.
We introduce a new "is-cheap" function to TLI rather than using
isNopAddrSpaceCast because some GPU platforms want the ability to ask
for non-nop casts to be sunk.
Reviewers: arsenm, tra
Subscribers: jholewinski, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26923
llvm-svn: 287591
Allow using an instruction other than a mul or phi as the base for
root-finding. For example, the included testcase includes a loop
which requires using a getelementptr as the base for root-finding.
Differential Revision: https://reviews.llvm.org/D26529
llvm-svn: 287588
This is a bit too aggressive of a warning, as it is forces
ANY function which returns a StringRef to have its return
value checked. While useful on classes like llvm::Error which
are designed to require checking, this is not the case for
StringRef, and it is perfectly reasonable to have a function
return a StringRef for which the return value is not checked.
Move LLVM_NODISCARD to each of the individual member functions
where it makes sense instead.
llvm-svn: 287586
This is a first step towards canonicalization and improved folding/codegen
for integer min/max as discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/106868.html
Here, we're just matching the simplest min/max patterns and adjusting the
icmp predicate while swapping the select operands.
I've included FIXME tests in test/Transforms/InstCombine/select_meta.ll
so it's easier to see how this might be extended (corresponds to the TODO
comment in the code). That's also why I'm using matchSelectPattern()
rather than a simpler check; once the backend is patched, we can just
remove some of the restrictions to allow the obfuscated min/max patterns
in the FIXME tests to be matched.
Differential Revision: https://reviews.llvm.org/D26525
llvm-svn: 287585
The ODR detection in initialization-bug.cc now works on Darwin (due to the recently enabled "live globals" on-by-default), but only if the deployment target is 10.11 or higher. Let's adjust the testcases.
Differential Revision: https://reviews.llvm.org/D26927
llvm-svn: 287581