The transition is done by using methods of AsmPrinter which
automatically emit values in compliance with the selected DWARF format.
Differential Revision: https://reviews.llvm.org/D87013
The patch fixes calculating the size of the table and emitting
the fields which depend on the DWARF format by using methods that
choose appropriate sizes automatically.
Differential Revision: https://reviews.llvm.org/D87012
The patch fixes emitting the offset to the type DIE. All other fields
are already fixed in previous patches.
Differential Revision: https://reviews.llvm.org/D87021
These two fixes are better to go together because llvm-dwarfdump is
unable to dump a table when another one is malformed.
Differential Revision: https://reviews.llvm.org/D87018
The patch uses a common method to determine the appropriate form for
the value of the attribute.
Differential Revision: https://reviews.llvm.org/D87016
This is mostly an NFC patch because the involved methods are used when
emitting DWO files, which is incompatible with DWARFv3, or for platforms
where DWARF64 is not supported yet.
Differential Revision: https://reviews.llvm.org/D87015
The patch also adds a method to choose an appropriate DWARF form
to represent section offsets according to the version and the format
of producing debug info.
Differential Revision: https://reviews.llvm.org/D87014
The patch adds a switch to enable emitting debug info in the 64-bit
DWARF format. Most emitter for sections will be updated in the subsequent
patches, whereas for .debug_line and .debug_frame the emitters are in
the MC library, which is already updated.
For now, the switch is enabled only for 64-bit ELF targets.
Differential Revision: https://reviews.llvm.org/D87011
DW_FORM_sec_offset and DW_FORM_strp imply values of different sizes with
DWARF32 and DWARF64. The patch fixes DIE value classes to use correct
sizes when emitting their values. For DIELocList it ensures that the
requested DWARF form matches the current DWARF format because that class
uses a method that selects the size automatically.
Differential Revision: https://reviews.llvm.org/D87009
These methods are used to emit values which are 32-bit in DWARF32 and
64-bit in DWARF64. The patch fixes them so that they choose the length
automatically, depending on the DWARF format set in the Context.
Differential Revision: https://reviews.llvm.org/D87008
When concatenating directory with filename in getFilenameByIndex, we
might end up with a path that contains extra dots. For example, if the
input is /path and ./example, we would return /path/./example. Run
sys::path::remove_dots on the output to eliminate unnecessary dots.
Differential Revision: https://reviews.llvm.org/D87657
Add a combiner helper that replaces G_UNMERGE where all the destination lanes
are dead except the first one with a G_TRUNC.
Differential Revision: https://reviews.llvm.org/D87174
The Fortran standard discusses BZ mode (treat blanks as zero digits)
explicitly in its effect on the editing of the digits prior to the
exponent part, but doesn't mention it in description of the
exponent part. Other compilers honor BZ mode in the exponent,
so we should do so too. So "1 e 1 " is 1.E11 in BZ mode.
Differential Revision: https://reviews.llvm.org/D87653
C-style /*comments*/ are removed during preprocessing directive
tokenization, but Fortran !comments need to be specifically
allowed.
Fixes LLVM bugzilla 47466.
Differential Revision: https://reviews.llvm.org/D87638
The check that the pointer inside of the user part of the chunk does not
adds any value, but it's the last user of AddrIsInside.
I'd like to simplify AsanChunk in followup patches.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D87642
Add a combiner helper that replaces G_UNMERGE of big constants into direct
use of smaller constants.
Differential Revision: https://reviews.llvm.org/D87166
Check applied to unbounded (incomplete) arrays and pointers
to spot cases where the computed address is beyond the
largest possible addressable extent of the array, based
on the address space in which the array is delcared, or
which the pointer refers to.
Check helps to avoid cases of nonsense pointer math and
array indexing which could lead to linker failures or
runtime exceptions. Of particular interest when building
for embedded systems with small address spaces.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D86796
As to not conflict with the legacy PM example passes under
llvm/lib/Transforms/Hello, this is under HelloNew. This makes the
CMakeLists.txt and general directory structure less confusing for people
following the example.
Much of the doc structure was taken from WritinAnLLVMPass.rst.
This adds a HelloWorld pass which simply prints out each function name.
More will follow after this, e.g. passes over different units of IR, analyses.
https://llvm.org/docs/WritingAnLLVMPass.html contains a lot more.
Relanded with missing "Support" dependency in LLVMBuild.txt.
Reviewed By: ychen, asbirlea
Differential Revision: https://reviews.llvm.org/D86979
https://reviews.llvm.org/D87554
Patch adds one new GICombinerRule for G_FABS. The combine rule folds G_FABS(G_FABS(X)) to G_FABS(X).
Patch additionally adds new combiner tests for the AArch64 target to test this new combiner rule.
Patch by mkitzan.
Add the matching and applying function to the combiner helper for
G_UNMERGE_VALUES(G_MERGE_VALUES).
This combine also supports any merge-like input nodes, like G_BUILD_VECTORS
and is robust against bitcasts in between int unmerge and merge nodes.
When the input type of the merge node and the output type of the unmerge
node are not the same, but the sizes are, the combine still applies but
creates bitcasts between the sources and the destinations instead of
reusing the destinations directly.
Long term, the artifact combiner should probably reuse that helper, but
as of today, it doesn't use any outside helper, so I kept it this way.
Differential Revision: https://reviews.llvm.org/D87117
A type name in an IMPLICIT declaration that was later used in a PARAMETER
statement caused problems because the default symbol scope had not yet been
initialized. I avoided dereferencing in the situation where the default scope
was uninitialized and added a test that triggers the problem.
Also, once I corrected the bad dereference, the compiler was putting out
misleading error messages. The underlying error us due to violating section
7.5.10, paragraph 4, which states:
A structure constructor shall not appear before the referenced type is
defined.
I fixed this by testing to see if a type that is used in a structure
constructor is forward referenced.
Differential Revision: https://reviews.llvm.org/D87535
This patch makes `std::rotate` a constexpr. In doing so, this patch also
updates the internal `__move` and `__move_backward` funtions to be
constexpr.
This patch was previously reverted in ed653184ac because it was missing
some UNSUPPORTED markup for older compilers. This commit adds it.
Differential Revision: https://reviews.llvm.org/D65721
The std::string holding the content of a CookedSource no longer
needs to be exposed in its API after the recent work that allows
the parsing context to hold multiple instances of a CookedSource.
So clean the API. These changes were extracted from some work in
progress that was made easier by the API changes.
Differential Revision: https://reviews.llvm.org/D87635
The standard does not require the constructor `strstreambuf(streamsize alsize_arg = 0)`
leave the stream array unallocated when called with parameter `alsize_arg > 0`.
Conformant implementations of this constructor may allocate minimal `alsize_arg`
number of bytes forcing `str()` method to return non-null pointer.
Thanks to Andrey Maksimov for the patch.
Differential Revision: https://reviews.llvm.org/D72465
cppreference lists the support for this paper as partial.
I found 4 functions which the paper marks as `constexpr`,
but did not use the appropriate macro.
Differential Revision: https://reviews.llvm.org/D84275
This patch makes `std::rotate` a constexpr. In doing so, this patch also
updates the internal `__move` and `__move_backward` funtions to be
constexpr.
Reviewed By: ldionne
Differential Revision: https://reviews.llvm.org/D65721
The versions that take 'unsigned' will be removed in the future.
I tried to use getOriginalAlign instead of getAlign in some
places. getAlign factors in the minimum alignment implied by
the offset in the pointer info. Since we're also passing the
pointer info we can use the original alignment.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87592
Now backends spell out which namespace they want to be in, instead of relying on
clients #including them inside already-opened namespaces. This also means that
cppNamespaces should be fully qualified, and there's no implicit "::mlir::"
prepended to them anymore.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D86811
If user thread is in the allocator, the allocator
may have no pointer into future user's part of
the allocated block. AddrIsInside ignores such
pointers and lsan reports a false memory leak.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D87552
As to not conflict with the legacy PM example passes under
llvm/lib/Transforms/Hello, this is under HelloNew. This makes the
CMakeLists.txt and general directory structure less confusing for people
following the example.
Much of the doc structure was taken from WritinAnLLVMPass.rst.
This adds a HelloWorld pass which simply prints out each function name.
More will follow after this, e.g. passes over different units of IR, analyses.
https://llvm.org/docs/WritingAnLLVMPass.html contains a lot more.
Reviewed By: ychen, asbirlea
Differential Revision: https://reviews.llvm.org/D86979