This reverts commit 455d5a8a06.
It broke UBSan:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap-ubsan/builds/21386/steps/check-llvm%20ubsan/logs/stdio
/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/test/tools/llvm-readobj/ELF/malformed-pt-dynamic.test:62:10: error: WARN3: expected string not found in input
# WARN3: error: '[[FILE]]': Invalid data was encountered while parsing the file
^
<stdin>:2:1: note: scanning from here
/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp:1956:46: runtime error: addition of unsigned offset to 0x0000020c5b30 overflowed to 0x0000020c5b2f
^
<stdin>:2:1: note: with "FILE" equal to "/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm_build_ubsan/test/tools/llvm-readobj/ELF/Output/malformed-pt-dynamic\\.test\\.tmp3"
/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp:1956:46: runtime error: addition of unsigned offset to 0x0000020c5b30 overflowed to 0x0000020c5b2f
^
<stdin>:2:117: note: possible intended match here
/b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp:1956:46: runtime error: addition of unsigned offset to 0x0000020c5b30 overflowed to 0x0000020c5b2f
^
Input file: <stdin>
Check file: /b/sanitizer-x86_64-linux-bootstrap-ubsan/build/llvm-project/llvm/test/tools/llvm-readobj/ELF/malformed-pt-dynamic.test
For scalable vector shifts the prediacte is typically all active,
which gets selected to an unpredicated shift by immediate. When
code generating for fixed length vectors the predicate is based
on the vector length and so additional patterns are required to
make use of SVE's predicated shift by immediate instructions.
Differential Revision: https://reviews.llvm.org/D86204
When removing a non-constant store to a global in
CleanupPointerRootUsers(), the GlobalOpt pass could incorrectly return
false.
This was caught using the check introduced by D80916.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86149
Relanded since the buildbot issue was unrelated to this commit.
When hoisting simple values out from a loop, and an optsize attribute, a
convergent call, or an invoke instruction hindered the pass from
unswitching the loop, the pass would return an incorrect Modified
status.
This was caught using the check introduced by D80916.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D86085
The byte swapping, when dealing with 4 byte (float) FP constants
in DwarfExpression::addConstantFP, added in commit ef8992b9f0
was not correct. It always performed byte swapping using an
uint64_t value. When dealing with 4 byte values the 4 interesting
bytes ended up in the big end of the uint64_t, but later we emitted
the 4 bytes at the little end. So we ended up with zeroes being
emitted and faulty debug information.
This patch simplifies things a bit, IMHO. Using the APInt
representation throughout the function, instead of looking at
the internal representation using getRawBytes and without using
reinterpret_cast etc. And using API.byteSwap() should result in
correct byte swapping independent of APInt being 4 or 8 bytes.
Differential Revision: https://reviews.llvm.org/D86272
The code that reports "PT_DYNAMIC segment offset + size exceeds the size of the file"
has an issue: it is possible to bypass the validation by overflowing the size + offset result.
Differential revision: https://reviews.llvm.org/D85519
This reverts commit dfd447c220.
After I pushed this commit, llvm-sphinx-docs started failing, due to:
Warning, treated as error:
extension 'recommonmark' has no setup() function;
is it really a Sphinx extension module?
I don't see how this commit may have caused that, but I'm still
reverting it since I don't know how to proceed with that
troubleshooting.
When sampling from images with coordinates that only have 16 bit
accuracy, convert the image intrinsic call to use a16 or g16.
This does only happen if the target hardware supports it.
An alternative would be to always apply this combination, independent of
the target hardware and extend 16 bit arguments to 32 bit arguments
during legalization. To me, this sounds like an unnecessary roundtrip
that could prevent some further InstCombine optimizations.
Differential Revision: https://reviews.llvm.org/D85887
The check for the landingpad instructions was overly restrictive. In optimimized builds PHI nodes can appear
before the landingpad instructions, resulting in a fallback to SelectionDAG.
This change relaxes the check to allow PHI nodes.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D86141
Currently we have to set 'Machine' to something in our
YAML descriptions. Usually we use 'EM_X86_64' for 64-bit targets
and 'EM_386' for 32-bit targets. At the same time, in fact, in most
cases our tests do not need a machine type and we can use
'EM_NONE'.
This is cleaner, because avoids the need of using a particular machine.
In this patch I've made the 'Machine' key optional (the default value,
when it is not specified is `EM_NONE`) and removed it (where possible)
from yaml2obj, obj2yaml and llvm-readobj tests.
There are few tests left where I decided not to remove it, because
I didn't want to touch CHECK lines or doing anything more complex
than a removing a "Machine: *" line and formatting lines around.
Differential revision: https://reviews.llvm.org/D86202
The tests were not written with update_cc_test_checks
in mind, which make them difficult to update. Fix this.
Also, some of the consteval tests were outright broken,
since the CHECK lines were wrong.
Other than this, the semantics of the tests are preserved.
This patch moves FixedPointSemantics and APFixedPoint
from Clang to LLVM ADT.
This will make it easier to use the fixed-point
classes in LLVM for constructing an IR builder for
fixed-point and for reusing the APFixedPoint class
for constant evaluation purposes.
RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-August/144025.html
Reviewed By: leonardchan, rjmccall
Differential Revision: https://reviews.llvm.org/D85312
In D79719, LayoutField was refactored to fetch the size of field
types in bits and then convert to chars, rather than fetching
them in chars directly. This is not ideal, since it makes the
calculations char size dependent, and breaks for sizes that
are not a multiple of the char size.
This patch changes it to use getTypeInfoInChars instead of
getTypeInfo.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85191
This patch adds the capability to perform constraint redundancy checks for `FlatAffineConstraints` using `Simplex`, via a new member function `FlatAffineConstraints::removeRedundantConstraints`. The pre-existing redundancy detection algorithm runs a full rational emptiness check for each inequality separately for checking redundancy. Leveraging the existing `Simplex` infrastructure, in this patch we have an algorithm for redundancy checks that can check each constraint by performing pivots on the tableau, which provides an alternative to running Fourier-Motzkin elimination for each constraint separately.
Differential Revision: https://reviews.llvm.org/D84935
The `UnrollMaxBlockToAnalyze` parameter is used at the stage when we have no
information about a loop body BB cost. In some cases, e.g. for simple loop
```
for(int i=0; i<32; ++i){
D = Arr2[i*8 + C1];
Arr1[i*64 + C2] += C3 * D;
Arr1[i*64 + C2 + 2048] += C4 * D;
}
```
current default parameter value is not enough to run deeper cost analyze so the
loop is not completely unrolled.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D86248
It isn't very wise to pass an assembly file to the compiler and tell it to compile as a C file and hope that the compiler recognizes it as assembly instead.
Instead enable the ASM language and mark the files as being ASM.
[525/634] Building C object lib/tsan/CMakeFiles/clang_rt.tsan-aarch64.dir/rtl/tsan_rtl_aarch64.S.o
FAILED: lib/tsan/CMakeFiles/clang_rt.tsan-aarch64.dir/rtl/tsan_rtl_aarch64.S.o
/opt/tooling/drive/host/bin/clang --target=aarch64-linux-gnu -I/opt/tooling/drive/llvm/compiler-rt/lib/tsan/.. -isystem /opt/tooling/drive/toolchain/opt/drive/toolchain/include -x c -Wall -Wno-unused-parameter -fno-lto -fPIC -fno-builtin -fno-exceptions -fomit-frame-pointer -funwind-tables -fno-stack-protector -fno-sanitize=safe-stack -fvisibility=hidden -fno-lto -O3 -gline-tables-only -Wno-gnu -Wno-variadic-macros -Wno-c99-extensions -Wno-non-virtual-dtor -fPIE -fno-rtti -Wframe-larger-than=530 -Wglobal-constructors --sysroot=. -MD -MT lib/tsan/CMakeFiles/clang_rt.tsan-aarch64.dir/rtl/tsan_rtl_aarch64.S.o -MF lib/tsan/CMakeFiles/clang_rt.tsan-aarch64.dir/rtl/tsan_rtl_aarch64.S.o.d -o lib/tsan/CMakeFiles/clang_rt.tsan-aarch64.dir/rtl/tsan_rtl_aarch64.S.o -c /opt/tooling/drive/llvm/compiler-rt/lib/tsan/rtl/tsan_rtl_aarch64.S
/opt/tooling/drive/llvm/compiler-rt/lib/tsan/rtl/tsan_rtl_aarch64.S:29:1: error: expected identifier or '('
.section .text
^
1 error generated.
Fixed Clang not being passed as the assembly compiler for compiler-rt runtime build.
Patch By: tambre
Differential Revision: https://reviews.llvm.org/D85706
Use the stack to save and restore the link register when there is no
available register to do it.
Differential Revision: https://reviews.llvm.org/D76069
When hoisting simple values out from a loop, and an optsize attribute, a
convergent call, or an invoke instruction hindered the pass from
unswitching the loop, the pass would return an incorrect Modified
status.
This was caught using the check introduced by D80916.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D86085
Comparison against null is a common pattern that usually is followed by
error handling code and the likes. We now use AANonNull to simplify
these comparisons optimistically in order to make more code dead early
on.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D86145
`AADereferenceable::getAssumedDereferenceableBytes()` is actually
deducing `dereferenceable_or_null`. We should not use that information
to deduce `nonnull`, since it doesn't imply `nonnull`.
This patch adds support for constrained scalar fp to int operations on
PowerPC. Besides, this fixes the FP exception bit of quad-precision
convert & truncate instructions.
Reviewed By: steven.zhang, uweigand
Differential Revision: https://reviews.llvm.org/D81537
This commit introduced a non-trivial compile time regression that needs
to be addressed: https://reviews.llvm.org/D70365#2227627
Given that it is unclear how long that will take, I'll revert it for
now.
This reverts commit eedf18fc1f.
This commits breaks certain OpenMP codes (on power) because it expanded
the Attributor scope without telling the Attributor about the SCC
extend. See: https://reviews.llvm.org/D85544#2227611
This reverts commit b0b32e6490.
Target memory manager is introduced in this patch which aims to manage target
memory such that they will not be freed immediately when they are not used
because the overhead of memory allocation and free is very large. For CUDA
device, cuMemFree even blocks the context switch on device which affects
concurrent kernel execution.
The memory manager can be taken as a memory pool. It divides the pool into
multiple buckets according to the size such that memory allocation/free
distributed to different buckets will not affect each other.
In this version, we use the exact-equality policy to find a free buffer. This
is an open question: will best-fit work better here? IMO, best-fit is not good
for target memory management because computation on GPU usually requires GBs of
data. Best-fit might lead to a serious waste. For example, there is a free
buffer of size 1960MB, and now we need a buffer of size 1200MB. If best-fit,
the free buffer will be returned, leading to a 760MB waste.
The allocation will happen when there is no free memory left, and the memory
free on device will take place in the following two cases:
1. The program ends. Obviously. However, there is a little problem that plugin
library is destroyed before the memory manager is destroyed, leading to a fact
that the call to target plugin will not succeed.
2. Device is out of memory when we request a new memory. The manager will walk
through all free buffers from the bucket with largest base size, pick up one
buffer, free it, and try to allocate immediately. If it succeeds, it will
return right away rather than freeing all buffers in free list.
Update:
A threshold (8KB by default) is set such that users could control what size of memory
will be managed by the manager. It can also be configured by an environment variable
`LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD`.
Reviewed By: jdoerfert, ye-luo, JonChesterfield
Differential Revision: https://reviews.llvm.org/D81054
- Rename AMDGPU SCC DWARF register to STATUS since the scalar
condition code is a bit within the STATUS register.
- Correct bit size of the VCC_64 register to 64 which is the size in
wave64 mode.
Differential Revision: https://reviews.llvm.org/D86259
We don't need a std::string for a literal string, we can use a
StringRef.
The addition of StringRefs produces a Twine that we can just call
str() without converting to a SmallString ourselves. Twine will
do that internally.
- This utility to merge a block anywhere into another one can help inline single
block regions into other blocks.
- Modified patterns test to use the new function.
Differential Revision: https://reviews.llvm.org/D86251
This adds parsing and codegen support for tune in target attribute.
I've implemented this so that arch in the target attribute implicitly disables tune from the command line. I'm not sure what gcc does here. But since -march implies -mtune. I assume 'arch' in the target attribute implies tune in the target attribute.
Differential Revision: https://reviews.llvm.org/D86187
for array bounds, not "integer constant" rules.
For an array bound of class type, this causes us to perform an implicit
conversion to size_t, instead of looking for a unique conversion to
integral or unscoped enumeration type. This affects which cases are
valid when a class has multiple implicit conversion functions to
different types.
I move the triple (de)composition logic into the builder in e5d08fcbac
but this test is relying on Make to construct the set the ARCH,
ARCH_CFLAGS and SDKROOT based on the given TRIPLE. This patch updates
the test to pass these variables directly.
Differential revision: https://reviews.llvm.org/D86244
This patch adds the infrastructure to have language specific REPL init
files. It's the foundation work to a following patch that will introduce
Swift REPL init file.
When lldb is launched with the `--repl` option, it will look for a REPL
init file in the home directory and source it. This overrides the
default `~/.lldbinit`, which content might make the REPL behave
unexpectedly. If the REPL init file doesn't exists, lldb will fall back
to the default init file.
rdar://65836048
Differential Revision: https://reviews.llvm.org/D86242
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The behavior of the CrossOver mutator has changed with
bb54bcf849. This seems to affect the
value-profile-load test on Darwin. This patch provides a wider margin for
determining success of the value-profile-load test, by testing the targeted
functionality (i.e., GEP index value profile) more directly and faster. To this
end, LoadTest.cpp now uses a narrower condition (Size != 8) for initial pruning
of inputs, effectively preventing libFuzzer from generating inputs longer than
necessary and spending time on mutating such long inputs in the corpus - a
functionality not meant to be tested by this specific test.
Previously, on x86/Linux, it required 6,597,751 execs with -use_value_profile=1
and 19,605,575 execs with -use_value_profile=0 to hit the crash. With this
patch, the test passes with 174,493 execs, providing a wider margin from the
given trials of 10,000,000. Note that, without the value profile (i.e.,
-use_value_profile=0), the test wouldn't pass as it still requires 19,605,575
execs to hit the crash.
Differential Revision: https://reviews.llvm.org/D86247
InitializeInterceptors() calls dlsym(), which calls calloc(). Depending
on the allocator implementation, calloc() may invoke mmap(), which
results in a segfault since REAL(mmap) is still being resolved.
We fix this by doing a direct syscall if interceptors haven't been fully
resolved yet.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D86168
-force-attribute adds an attribute to function via command-line.
However, there was no counter-part to remove an attribute. This patch
adds -force-remove-attribute that removes an attribute from function.
Differential Revision: https://reviews.llvm.org/D85586
There's a potential motivating case to increase this limit in PR47191:
http://bugs.llvm.org/PR47191
But first we should make it less hacky. The limit in InstCombine is directly tied
to this value because an increase there can cause asserts in the underlying value
tracking calls if not changed together. The usage in VectorUtils is independent,
but the comment suggests that we should use the same value unless there's a known
reason to diverge. There are similar limits in codegen analysis, but I think we
should leave those independent in case we intentionally want the optimization
power/cost to be different there.
Differential Revision: https://reviews.llvm.org/D86113