This reverts commit r233055.
It still causes buildbot failures (gcc running out of memory on several platforms, and a self-host failure on arm), although less than the previous time.
llvm-svn: 233068
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first time this was committed (r229831), it caused several buildbot failures.
At least some of the ARM ones were due to gcc/binutils issues, and should now be fixed.
Differential Revision: http://reviews.llvm.org/D8542
llvm-svn: 233055
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
Differential Revision: http://reviews.llvm.org/D7065
llvm-svn: 229831
If there is no associated immediate (MS style inline asm), do not try to access
the operand, assume that it is valid. This should fix the buildbots after SVN
r225941.
llvm-svn: 225950
The int instruction takes as an operand an 8-bit immediate value. Validate that
the input is valid rather than silently truncating the value.
llvm-svn: 225941
Requires new AsmParserOperand types that detect 16-bit and 32/64-bit mode so that we choose the right instruction based on default sizing without predicates. This is necessary since predicates mess up the disassembler table building.
llvm-svn: 225256
The assembler backend will relax to the long form if necessary. This removes a swap from long form to short form in the MCInstLowering code. Selecting the long form used to be required by the old JIT.
llvm-svn: 225242
Make sure they all have llvm_unreachable on the default path out of the switch. Remove unnecessary "default: break". Remove a 'return' after unreachable. Fix some indentation.
llvm-svn: 225114
This is necessary to allow the disassembler to be able to handle AdSize32 instructions in 64-bit mode when address size prefix is used.
Eventually we should probably also support 'addr32' and 'addr16' in the assembler to override the address size on some of these instructions. But for now we'll just use special operand types that will lookup the current mode size to select the right instruction.
llvm-svn: 225075
The X86AsmParser intel handling was refactored in r216481, making it
try each different memory operand size to see which one matches.
Operand sizes larger than 80 ("[xyz]mmword ptr") were forgotten, which
led to an "invalid operand" error for code such as:
movdqa [rax], xmm0
llvm-svn: 223187
Summary: Fixed memory accesses with rbp as a base or an index register.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5819
llvm-svn: 220283
Summary: [asan-asm-instrumentation] Fixed memory references which includes %rsp as a base or an index register.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5599
llvm-svn: 219602
Summary:
This fixes a couple of issues. One is ensuring that AOK_Label rewrite
rules have a lower priority than AOK_Skip rules, as AOK_Skip needs to
be able to skip the brackets properly. The other part of the fix ensures
that we don't overwrite Identifier when looking up the identifier, and
that we use the locally available information to generate the AOK_Label
rewrite in ParseIntelIdentifier. Doing that in CreateMemForInlineAsm
would be problematic since the Start location there may point to the
beginning of a bracket expression, and not necessarily the beginning of
an identifier.
This also means that we don't need to carry around the InternlName field,
which helps simplify the code.
Test Plan: This will be tested on the clang side.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5445
llvm-svn: 218270
The implementation of the callback in clang's Sema will return an
internal name for labels.
Test Plan: Will be tested in clang.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4587
llvm-svn: 218229
parsing (and latent bug in the instruction definitions).
This is effectively a revert of r136287 which tried to address
a specific and narrow case of immediate operands failing to be accepted
by x86 instructions with a pretty heavy hammer: it introduced a new kind
of operand that behaved differently. All of that is removed with this
commit, but the test cases are both preserved and enhanced.
The core problem that r136287 and this commit are trying to handle is
that gas accepts both of the following instructions:
insertps $192, %xmm0, %xmm1
insertps $-64, %xmm0, %xmm1
These will encode to the same byte sequence, with the immediate
occupying an 8-bit entry. The first form was fixed by r136287 but that
broke the prior handling of the second form! =[ Ironically, we would
still emit the second form in some cases and then be unable to
re-assemble the output.
The reason why the first instruction failed to be handled is because
prior to r136287 the operands ere marked 'i32i8imm' which forces them to
be sign-extenable. Clearly, that won't work for 192 in a single byte.
However, making thim zero-extended or "unsigned" doesn't really address
the core issue either because it breaks negative immediates. The correct
fix is to make these operands 'i8imm' reflecting that they can be either
signed or unsigned but must be 8-bit immediates. This patch backs out
r136287 and then changes those places as well as some others to use
'i8imm' rather than one of the extended variants.
Naturally, this broke something else. The custom DAG nodes had to be
updated to have a much more accurate type constraint of an i8 node, and
a bunch of Pat immediates needed to be specified as i8 values.
The fallout didn't end there though. We also then ceased to be able to
match the instruction-specific intrinsics to the instructions so
modified. Digging, this is because they too used i32 rather than i8 in
their signature. So I've also switched those intrinsics to i8 arguments
in line with the instructions.
In order to make the intrinsic adjustments of course, I also had to add
auto upgrading for the intrinsics.
I suspect that the intrinsic argument types may have led everything down
this rabbit hole. Pretty happy with the result.
llvm-svn: 217310
Instructions like 'fxsave' and control flow instructions like 'jne'
match any operand size. The loop I added to the Intel syntax matcher
assumed that using a different size would give a different instruction.
Now it handles the case where we get the same instruction for different
memory operand sizes.
This also allows us to remove the hack we had for unsized absolute
memory operands, because we can successfully match things like 'jnz'
without reporting ambiguity. Removing this hack uncovered test case
involving 'fadd' that was ambiguous. The memory operand could have been
single or double precision.
llvm-svn: 216604
The existing matcher has lots of AT&T assembly dialect assumptions baked
into it. In particular, the hack for resolving the size of a memory
operand by appending the four most common suffixes doesn't work at all.
The Intel assembly dialect mnemonic table has ambiguous entries, so we
need to try matching multiple times with different operand sizes, since
that's the only way to choose different instruction variants.
This makes us more compatible with gas's implementation of Intel
assembly syntax. MSVC assumes you want byte-sized operations for the
instructions that we reject as ambiguous.
Reviewed By: grosbach
Differential Revision: http://reviews.llvm.org/D4747
llvm-svn: 216481
ARM in particular is getting dangerously close to exceeding 32 bits worth of
possible subtarget features. When this happens, various parts of MC start to
fail inexplicably as masks get truncated to "unsigned".
Mostly just refactoring at present, and there's probably no way to test.
llvm-svn: 215887
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
Fixes PR18916. I don't think we need to implement support for either
hybrid syntax. Nobody should write Intel assembly with '%' prefixes on
their registers or AT&T assembly without them.
llvm-svn: 215031
This is consistent with how we parse them in a standalone .s file, and
inline assembly shouldn't differ.
This fixes errors about requiring more registers than available in
cases like this:
void f();
void __declspec(naked) g() {
__asm pusha
__asm call f
__asm popa
__asm ret
}
There are no registers available to pass the address of 'f' into the asm
blob. The asm should now directly call 'f'.
Tests will land in Clang shortly.
llvm-svn: 214550
This improves the diagnostics from the regular assembler, but more
importantly it fixes an assertion when parsing inline assembly. Test
landing in Clang.
llvm-svn: 214468