Earlier in the year intrinsics for lrint, llrint, lround and llround were
added to llvm. The constrained versions are now implemented here.
Reviewed by: andrew.w.kaylor, craig.topper, cameron.mcinally
Approved by: craig.topper
Differential Revision: https://reviews.llvm.org/D64746
llvm-svn: 373900
A set of function attributes is required in any function that uses constrained
floating point intrinsics. None of our tests use these attributes.
This patch fixes this.
These tests have been tested against the IR verifier changes in D68233.
Reviewed by: andrew.w.kaylor, cameron.mcinally, uweigand
Approved by: andrew.w.kaylor
Differential Revision: https://reviews.llvm.org/D67925
llvm-svn: 373761
This implements constrained floating point intrinsics for FP to signed and
unsigned integers.
Quoting from D32319:
The purpose of the constrained intrinsics is to force the optimizer to
respect the restrictions that will be necessary to support things like the
STDC FENV_ACCESS ON pragma without interfering with optimizations when
these restrictions are not needed.
Reviewed by: Andrew Kaylor, Craig Topper, Hal Finkel, Cameron McInally, Roman Lebedev, Kit Barton
Approved by: Craig Topper
Differential Revision: http://reviews.llvm.org/D63782
llvm-svn: 370228
The new fptrunc and fpext intrinsics are constrained versions of the
regular fptrunc and fpext instructions.
Reviewed by: Andrew Kaylor, Craig Topper, Cameron McInally, Conner Abbot
Approved by: Craig Topper
Differential Revision: https://reviews.llvm.org/D55897
llvm-svn: 360581
This commit introduces a set of experimental intrinsics intended to prevent
optimizations that make assumptions about the rounding mode and floating point
exception behavior. These intrinsics will later be extended to specify
flush-to-zero behavior. More work is also required to model instruction
dependencies in machine code and to generate these instructions from clang
(when required by pragmas and/or command line options that are not currently
supported).
Differential Revision: https://reviews.llvm.org/D27028
llvm-svn: 293226