Some targets like microMIPS and ARM Thumb use the last bit of a symbol's
value to mark 'compressed' code. This patch adds new virtual function
`DynamicTable::getAtomVirtualAddress` which allows to adjust a symbol's
value before using it in a dynamic table tags like DT_INIT / DT_FINI.
llvm-svn: 223963
The LLD linker searches initializer and finalizer function names
and emits DT_INIT/DT_FINI dynamic table tags to point to these symbols.
The -init/-fini command line options override initializer ("_init") and
finalizer ("_fini") function names used by default.
Now the -init/-fini options do not affect .init_array/.fini_array
sections. The corresponding code has been removed.
Differential Revision: http://reviews.llvm.org/D6578
llvm-svn: 223917
Looks like if you have symbol foo in a module-definition file
(.def file), and if the actual symbol name to match that export
description is _foo@x (where x is an integer), the exported
symbol name becomes this.
- foo in the .dll file
- foo@x in the .lib file
I have checked in a few fixes recently for exported symbol name mangling.
I haven't found a simple rule that governs all the mangling rules.
There may not ever exist. For now, this is a patch to improve .lib
file compatibility.
llvm-svn: 223524
To find an AtomLayout object for the given symbol I replace the
`Layout::findAtomAddrByName` method by `Layout::findAtomLayoutByName` method.
llvm-svn: 223359
Looks like the rule of /export is more complicated than
I was thinking. If /export:foo, for example, is given, and
if the actual symbol name in an object file is _foo@<number>,
we need to export that symbol as foo, not as the mangled name.
If only /export:_foo@<number> is given, the symbol is exported
as _foo@<number>.
If both /export:foo and /export:_foo@<number> are given,
they are considered as duplicates, and the linker needs to
choose the unmangled name.
The basic idea seems that the linker needs to export a symbol
with the same name as given as /export.
We exported mangled symbols. This patch fixes that issue.
llvm-svn: 223341
/export option can be given multiple times to specify multiple
symbols to be exported. /export accepts both decorated and
undecorated name.
If you give both undecorated and decorated name of the same symbol
to /export, they are resolved to the same symbol. In this case,
we need to de-duplicate the exported names, so that we don't have
duplicated items in the export symbol table in a DLL.
We remove duplicate items from a vector. The bug was there.
Because we had pointers pointing to elements of the vector,
after an item is removed, they would point wrong elements.
This patch is to remove these pointers. Added a test for that case.
llvm-svn: 223200
The AtomSections were improperly merging sections from various input files. This
patch fixes the problem, with an updated test that was provided by Simon.
Thanks to Simon Atanasyan for catching this issue.
llvm-svn: 222982
Export table entries need to be sorted in ASCII-betical order,
so that the loader can find an entry for a function by binary search.
We sorted the entries by its mangled names. That can be different
from their exported names. As a result, LLD produces incorrect export
table, from which the loader complains that a function that actually
exists in a DLL cannot be found.
This patch fixes that issue.
llvm-svn: 222452
Mach-o does not use a simple SO_NEEDED to track dependent dylibs. Instead,
the linker copies four things from each dylib to each client: the runtime path
(aka "install name"), the build time, current version (dylib build number), and
compatibility version The build time is no longer used (it cause every rebuild
of a dylib to be different). The compatibility version is usually just 1.0
and never changes, or the dylib becomes incompatible.
This patch copies that information into the NormalizedMachO format and
propagates it to clients.
llvm-svn: 222300
When fixing up BL instructions, the linker has to compare the thumbness of the
target to decide if the instruction needs to be converted to BLX. But with B
instruction there is no BX, so the linker asserts if the target is not the
same thumbness. This assert was firing in -r mode when the target was undefined
which it interpreted as being non-thumb.
Test case change is to add a B (in both thumb and arm code) to an undefined
symbol and round trip through -r mode.
llvm-svn: 222266
The arm64 assembler almost always uses r_extern=1 relocations in which the
r_symbolnum field is the index of the symbol the relocation references. But
sometimes it will set r_extern=0 in which case the linker needs to read the
content of the reloction to determine the target.
Add test case that the r_extern=0 relocation round trips.
llvm-svn: 222198
If you have something like
__declspec(align(8192)) int foo = 1;
in your code, the compiler makes the data to be aligned to 8192-byte
boundary, and the linker align the section containing the data to 8192.
LLD always aligned the section to 4192. So, as long as alignment
requirement is smaller than 4192, it was correct, but for larger
requirements, it's wrong.
This patch fixes the issue.
llvm-svn: 222043
With --no-align-segments, there is a bug that the fileoffset may not be
congruent to virtual address modulo page alignment.
This patch fixes the problem.
llvm-svn: 221890
MIPS ELF symbols might contain some additional MIPS-specific flags
in the st_other field besides visibility ones. These flags indicate
code properties like microMIPS / MIPS16 encoding, position independent
code etc. We need to transfer the flags from input objects to the
output linked file to write them into the symbol table, adjust symbols
addresses etc.
I add new attribute CodeModel to the DefinedAtom class to hold target
specific flag and to get over YAML/Native format conversion barrier.
Other architectures/targets can extend CodeModel enumeration by their
own flags.
MIPS specific part of this patch adds support for STO_MIPS_MICROMIPS
flag. This flag marks microMIPS symbols. Such symbol should:
a) Has STO_MIPS_MICROMIPS in the corresponding .symtab record.
b) Has adjusted (odd) address in the corresponding .symtab
and .dynsym records.
llvm-svn: 221864
The segment alignment for PT_LOAD segments is set to page size by default, but
if any of the sections require an alignment more than the page size, the segment
alignment property is set to the maximum alignment of the sections that are part
of the segment.
llvm-svn: 221862
The user can use the max-page-size option and set the maximum page size. Dont
check for maximum allowed values for page size, as its what the kernel is
configured with.
Fix the test as well.
llvm-svn: 221858
Each entry in the delay-import address table had a wrong alignment
requirement if 32 bit. As a result it got wrong delay-import table.
Because llvm-readobj doesn't print out that field, we don't have a
test for that. I'll submit a test that would catch this bug after
improving llvm-readobj.
llvm-svn: 221853
The GOT slots were being laid out in a random order by the GOTPass which
caused randomness in the output file.
Note: With this change lld now bootstraps on darwin. That is:
1) link lld using system linker to make lld.1
2) link lld using lld.1 to make lld.2
3) link lld using lld.2 to make lld.3
Now lld.2 and lld.3 are identical.
llvm-svn: 221831
On darwin in final linked images, the __TEXT segment covers that start of the
file. That means in memory a process can see the mach_header (and load commands)
for every loaded image in a process. There are APIs that take and return the
mach_header addresses as a way to specify a particular loaded image.
For completeness, any code can get the address of the mach_header of the image
it is in by using &__dso_handle. In addition there are mach-o type specific
symbols like __mh_execute_header.
The linker needs to supply a definition for any of these symbols if used. But
the address the symbol it resolves to is not in any section. Instead it is the
address of the start of the __TEXT segment.
I needed to make a small change to SimpleFileNode to not override
resetNextIndex() because the Driver creates a SimpleFileNode to hold the
internal/implicit files that the context/writer can create. For some reason
SimpleFileNode overrode resetNextIndex() to do nothing instead of reseting
the index (which mach-o needs if the internal file is an archive).
llvm-svn: 221822
The way lazy binding works in mach-o is that the linker generates a helper
function and has the stub (PLT) initially jump to it. The helper function
pushes an extra parameter then jumps into dyld. The extra parameter is an
offset into the lazy binding info where dyld will find the information about
which symbol to bind and way lazy binding pointer to update.
llvm-svn: 221654
The dynamic table was creating the entry DT_FINI_ARRAY{SZ} even when there was
no .fini_array section. The entries should be creating in the dynamic section
only if there are sections .init_array/.fini_array in the output.
Fixes the tests that checked for errroneous outputs.
llvm-svn: 221588
The value of _DYNAMIC should be pointing at the start of the .dynamic segment.
This was pointing to the end of the dynamic segment. Similarly the value of
_GLOBAL_OFFSET_TABLE_ was not proper too.
llvm-svn: 221587
lld generates an ELF by adhering to the ELF spec by aligning vma/fileoffset to a
page boundary, but this becomes an issue when dealing with large pages. This
adds support so that lld generated executables adheres to the ELF spec with the
rule vma % p_align = offset % p_align.
This is supported by the flag --no-align-segments.
This could be the default in few targets like X86_64 to save space on disk.
llvm-svn: 221571
The darwin linker lets you rearrange functions and data for better locality
(less paging). You do this with the -order_file option which supplies a text
file containing one symbol per line.
Implementing this required a small change to LayoutPass to add a custom sorter
hook.
llvm-svn: 221545
If /subsystem option is not given, the linker needs to infer the
subsystem based on the entry point symbol. If it fails to infer
that, the linker should error out on it.
LLD was almost correct, but it would fail to infer the subsystem
if the entry point is specified with /entry. This is because the
subsystem inference was coupled with the entry point function
searching (if no entry point name is specified, the linker needs
to find the right entry name).
This patch makes the subsystem inference an independent pass to
fix the issue. Now, as long as an entry point function is defined,
LLD can infer the subsystem no matter how it resolved the entry
point.
I don't think scanning all the defined symbols is fast, although
it shouldn't be that slow. The file class there does not provide
any easy way to find an atom by name, so this is what we can do
at this moment. I'd like to revisit this later to make it more
efficient.
llvm-svn: 221499
The darwin linker has two ways to force all members of an archive to be loaded.
The -all_load option applies to all static libraries. The -force_load takes
a path to a library and just that library's members are force loaded.
llvm-svn: 221477
code. Same basic change that was done in r218429 for ARM code.
Where the ARM thumb symbolizer in llvm-objdump’s Mach-O disassembler is now
plumbed in with r221470 from the llvm trunk.
llvm-svn: 221473