This adds necessary infrastructure to support the @h modifier.
Note that all required relocation types were already present
(and unused).
This patch provides support for using @h in the assembler;
it would also be possible to now use this feature in code
generated by the compiler, but this is not done yet.
llvm-svn: 184548
This renames more VK_PPC_ enums, to make them more closely reflect
the @modifier string they represent. This also prepares for adding
a bunch of new VK_PPC_ enums in upcoming patches.
For consistency, some MO_ flags related to VK_PPC_ enums are
likewise renamed.
No change in behaviour.
llvm-svn: 184547
This is another minor cleanup; to bring enum names in line
with the corresponding @modifier names, this renames:
VK_PPC_TOC -> VK_PPC_TOCBASE
VK_PPC_TOC_ENTRY -> VK_PPC_TOC16
No code change intended.
llvm-svn: 184491
When targeting the Darwin assembler, we need to generate markers ha16() and
lo16() to designate the high and low parts of a (symbolic) immediate. This
is necessary not just for plain symbols, but also for certain symbolic
expression, typically along the lines of ha16(A - B). The latter doesn't
work when simply using VariantKind flags on the symbol reference.
This is why the current back-end uses hacks (explicitly called out as such
via multiple FIXMEs) in the symbolLo/symbolHi print methods.
This patch uses target-defined MCExpr codes to represent the Darwin
ha16/lo16 constructs, following along the lines of the equivalent solution
used by the ARM back end to handle their :upper16: / :lower16: markers.
This allows us to get rid of special handling both in the symbolLo/symbolHi
print method and in the common code MCExpr::print routine. Instead, the
ha16 / lo16 markers are printed simply in a custom print routine for the
target MCExpr types. (As a result, the symbolLo/symbolHi print methods
can now replaced by a single printS16ImmOperand routine that also handles
symbolic operands.)
The patch also provides a EvaluateAsRelocatableImpl routine to handle
ha16/lo16 constructs. This is not actually used at the moment by any
in-tree code, but is provided as it makes merging into David Fang's
out-of-tree Mach-O object writer simpler.
Since there is no longer any need to treat VK_PPC_GAS_HA16 and
VK_PPC_DARWIN_HA16 differently, they are merged into a single
VK_PPC_ADDR16_HA (and likewise for the _LO16 types).
llvm-svn: 182616
This patch adds support for PowerPC platform-specific variant
kinds in MCSymbolRefExpr::getVariantKindForName, and also
adds a test case to verify they are translated to the appropriate
fixup type.
llvm-svn: 181053
Add support for the COFF relocation types IMAGE_REL_I386_DIR32NB and
IMAGE_REL_AMD64_ADDR32NB for 32- and 64-bit respectively. These are
similar to normal 4-byte relocations except that they do not include
the base address of the image.
Image-relative relocations are used for debug information (32-bit) and
SEH unwind tables (64-bit).
A new MCSymbolRef variant called 'VK_COFF_IMGREL32' is introduced to
specify such relocations. For AT&T assembly, this variant can be accessed
using the symbol suffix '@imgrel'.
llvm-svn: 179240
'@SECREL' is what is used by the Microsoft assembler, but GNU as expects '@SECREL32'.
With the patch, the MC-generated code works fine in combination with a recent GNU as (2.23.51.20120920 here).
Patch by David Nadlinger!
Differential Revision: http://llvm-reviews.chandlerc.com/D429
llvm-svn: 178427
for a wider range of GOT entries that can hold thread-relative offsets.
This matches the behavior of GCC, which was not documented in the PPC64 TLS
ABI. The ABI will be updated with the new code sequence.
Former sequence:
ld 9,x@got@tprel(2)
add 9,9,x@tls
New sequence:
addis 9,2,x@got@tprel@ha
ld 9,x@got@tprel@l(9)
add 9,9,x@tls
Note that a linker optimization exists to transform the new sequence into
the shorter sequence when appropriate, by replacing the addis with a nop
and modifying the base register and relocation type of the ld.
llvm-svn: 170209
PowerPC target. This is the last of the four models, so we now have
full TLS support.
This is mostly a straightforward extension of the general dynamic model.
I had to use an additional Chain operand to tie ADDIS_DTPREL_HA to the
register copy following ADDI_TLSLD_L; otherwise everything above the
ADDIS_DTPREL_HA appeared dead and was removed.
As before, there are new test cases to test the assembly generation, and
the relocations output during integrated assembly. The expected code
gen sequence can be read in test/CodeGen/PowerPC/tls-ld.ll.
There are a couple of things I think can be done more efficiently in the
overall TLS code, so there will likely be a clean-up patch forthcoming;
but for now I want to be sure the functionality is in place.
Bill
llvm-svn: 170003
Add R_ARM_NONE and R_ARM_PREL31 relocation types
to MCExpr. Both of them will be used while
generating .ARM.extab and .ARM.exidx sections.
llvm-svn: 169965
Given a thread-local symbol x with global-dynamic access, the generated
code to obtain x's address is:
Instruction Relocation Symbol
addis ra,r2,x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
addi r3,ra,x@got@tlsgd@l R_PPC64_GOT_TLSGD16_L x
bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
R_PPC64_REL24 __tls_get_addr
nop
<use address in r3>
The implementation borrows from the medium code model work for introducing
special forms of ADDIS and ADDI into the DAG representation. This is made
slightly more complicated by having to introduce a call to the external
function __tls_get_addr. Using the full call machinery is overkill and,
more importantly, makes it difficult to add a special relocation. So I've
introduced another opcode GET_TLS_ADDR to represent the function call, and
surrounded it with register copies to set up the parameter and return value.
Most of the code is pretty straightforward. I ran into one peculiarity
when I introduced a new PPC opcode BL8_NOP_ELF_TLSGD, which is just like
BL8_NOP_ELF except that it takes another parameter to represent the symbol
("x" above) that requires a relocation on the call. Something in the
TblGen machinery causes BL8_NOP_ELF and BL8_NOP_ELF_TLSGD to be treated
identically during the emit phase, so this second operand was never
visited to generate relocations. This is the reason for the slightly
messy workaround in PPCMCCodeEmitter.cpp:getDirectBrEncoding().
Two new tests are included to demonstrate correct external assembly and
correct generation of relocations using the integrated assembler.
Comments welcome!
Thanks,
Bill
llvm-svn: 169910
on 64-bit PowerPC ELF.
The patch includes code to handle external assembly and MC output with the
integrated assembler. It intentionally does not support the "old" JIT.
For the initial-exec TLS model, the ABI requires the following to calculate
the address of external thread-local variable x:
Code sequence Relocation Symbol
ld 9,x@got@tprel(2) R_PPC64_GOT_TPREL16_DS x
add 9,9,x@tls R_PPC64_TLS x
The register 9 is arbitrary here. The linker will replace x@got@tprel
with the offset relative to the thread pointer to the generated GOT
entry for symbol x. It will replace x@tls with the thread-pointer
register (13).
The two test cases verify correct assembly output and relocation output
as just described.
PowerPC-specific selection node variants are added for the two
instructions above: LD_GOT_TPREL and ADD_TLS. These are inserted
when an initial-exec global variable is encountered by
PPCTargetLowering::LowerGlobalTLSAddress(), and later lowered to
machine instructions LDgotTPREL and ADD8TLS. LDgotTPREL is a pseudo
that uses the same LDrs support added for medium code model's LDtocL,
with a different relocation type.
The rest of the processing is straightforward.
llvm-svn: 169281
The default for 64-bit PowerPC is small code model, in which TOC entries
must be addressable using a 16-bit offset from the TOC pointer. Additionally,
only TOC entries are addressed via the TOC pointer.
With medium code model, TOC entries and data sections can all be addressed
via the TOC pointer using a 32-bit offset. Cooperation with the linker
allows 16-bit offsets to be used when these are sufficient, reducing the
number of extra instructions that need to be executed. Medium code model
also does not generate explicit TOC entries in ".section toc" for variables
that are wholly internal to the compilation unit.
Consider a load of an external 4-byte integer. With small code model, the
compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
With medium model, it instead generates:
addis 3, 2, .LC1@toc@ha
ld 3, .LC1@toc@l(3)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc ei[TC],ei
Here .LC1@toc@ha is a relocation requesting the upper 16 bits of the
32-bit offset of ei's TOC entry from the TOC base pointer. Similarly,
.LC1@toc@l is a relocation requesting the lower 16 bits. Note that if
the linker determines that ei's TOC entry is within a 16-bit offset of
the TOC base pointer, it will replace the "addis" with a "nop", and
replace the "ld" with the identical "ld" instruction from the small
code model example.
Consider next a load of a function-scope static integer. For small code
model, the compiler generates:
ld 3, .LC1@toc(2)
lwz 4, 0(3)
.section .toc,"aw",@progbits
.LC1:
.tc test_fn_static.si[TC],test_fn_static.si
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
For medium code model, the compiler generates:
addis 3, 2, test_fn_static.si@toc@ha
addi 3, 3, test_fn_static.si@toc@l
lwz 4, 0(3)
.type test_fn_static.si,@object
.local test_fn_static.si
.comm test_fn_static.si,4,4
Again, the linker may replace the "addis" with a "nop", calculating only
a 16-bit offset when this is sufficient.
Note that it would be more efficient for the compiler to generate:
addis 3, 2, test_fn_static.si@toc@ha
lwz 4, test_fn_static.si@toc@l(3)
The current patch does not perform this optimization yet. This will be
addressed as a peephole optimization in a later patch.
For the moment, the default code model for 64-bit PowerPC will remain the
small code model. We plan to eventually change the default to medium code
model, which matches current upstream GCC behavior. Note that the different
code models are ABI-compatible, so code compiled with different models will
be linked and execute correctly.
I've tested the regression suite and the application/benchmark test suite in
two ways: Once with the patch as submitted here, and once with additional
logic to force medium code model as the default. The tests all compile
cleanly, with one exception. The mandel-2 application test fails due to an
unrelated ABI compatibility with passing complex numbers. It just so happens
that small code model was incredibly lucky, in that temporary values in
floating-point registers held the expected values needed by the external
library routine that was called incorrectly. My current thought is to correct
the ABI problems with _Complex before making medium code model the default,
to avoid introducing this "regression."
Here are a few comments on how the patch works, since the selection code
can be difficult to follow:
The existing logic for small code model defines three pseudo-instructions:
LDtoc for most uses, LDtocJTI for jump table addresses, and LDtocCPT for
constant pool addresses. These are expanded by SelectCodeCommon(). The
pseudo-instruction approach doesn't work for medium code model, because
we need to generate two instructions when we match the same pattern.
Instead, new logic in PPCDAGToDAGISel::Select() intercepts the TOC_ENTRY
node for medium code model, and generates an ADDIStocHA followed by either
a LDtocL or an ADDItocL. These new node types correspond naturally to
the sequences described above.
The addis/ld sequence is generated for the following cases:
* Jump table addresses
* Function addresses
* External global variables
* Tentative definitions of global variables (common linkage)
The addis/addi sequence is generated for the following cases:
* Constant pool entries
* File-scope static global variables
* Function-scope static variables
Expanding to the two-instruction sequences at select time exposes the
instructions to subsequent optimization, particularly scheduling.
The rest of the processing occurs at assembly time, in
PPCAsmPrinter::EmitInstruction. Each of the instructions is converted to
a "real" PowerPC instruction. When a TOC entry needs to be created, this
is done here in the same manner as for the existing LDtoc, LDtocJTI, and
LDtocCPT pseudo-instructions (I factored out a new routine to handle this).
I had originally thought that if a TOC entry was needed for LDtocL or
ADDItocL, it would already have been generated for the previous ADDIStocHA.
However, at higher optimization levels, the ADDIStocHA may appear in a
different block, which may be assembled textually following the block
containing the LDtocL or ADDItocL. So it is necessary to include the
possibility of creating a new TOC entry for those two instructions.
Note that for LDtocL, we generate a new form of LD called LDrs. This
allows specifying the @toc@l relocation for the offset field of the LD
instruction (i.e., the offset is replaced by a SymbolLo relocation).
When the peephole optimization described above is added, we will need
to do similar things for all immediate-form load and store operations.
The seven "mcm-n.ll" test cases are kept separate because otherwise the
intermingling of various TOC entries and so forth makes the tests fragile
and hard to understand.
The above assumes use of an external assembler. For use of the
integrated assembler, new relocations are added and used by
PPCELFObjectWriter. Testing is done with "mcm-obj.ll", which tests for
proper generation of the various relocations for the same sequences
tested with the external assembler.
llvm-svn: 168708
Add support for a missed case when the symbols in a difference
expression are in the same section but not the same fragment.
rdar://10924681
llvm-svn: 151345
This enables the linker to match concrete relocation types (absolute or relative) with whatever library or C++ support code is being linked against.
llvm-svn: 149057
of several newly un-defaulted switches. This also helps optimizers
(including LLVM's) recognize that every case is covered, and we should
assume as much.
llvm-svn: 147861
in the right direction. It eliminated some hacks and will unblock codegen
work. But it's far from being done. It doesn't reject illegal expressions,
e.g. (FOO - :lower16:BAR). It also doesn't work in Thumb2 mode at all.
llvm-svn: 123369
actuall addresses in a .o file, so it is better to let the MachO writer compute
it.
This is good for two reasons. First, areas that shouldn't care about
addresses now don't have access to it. Second, the layout of each section
is independent. I should use this in a subsequent commit to speed it up.
Most of the patch is just removing the section address computation. The two
interesting parts are the change on how we handle padding in the end
of sections and how MachO can get the address of a-b when a and b are in
different sections.
Since now the expression evaluation normally doesn't know the section address,
it will think that a-b needs relocation and let the MachO writer know. Once
it has computed the section addresses, it calls back the expression evaluation
with the section addresses to resolve these expressions.
The remaining problem is the handling of padding. Currently it will create
a special alignment fragment at the end. Since that fragment doesn't update
the alignment of the section, it needs the real address to be computed.
Since now the layout will not compute a-b with a and b in different sections,
the only effect that the special alignment fragment has is update the
address size of the section. This can also be done by the MachO writer.
llvm-svn: 121076
variable if recursing fails to simplify it.
Factor AliasedSymbol to be a method of MCSymbol.
Update MCAssembler::EvaluateFixup to match the change in
EvaluateAsRelocatableImpl.
Remove the WeakRefExpr hack, as the object writer now sees the weakref with
no extra effort needed.
Nothing else is using MCTargetExpr, but keep it for now.
Now that the ELF writer sees relocations with aliases, handle
.weak foo2
foo2:
.weak bar2
.set bar2,foo2
.quad bar2
the same way gas does and produce a relocation with bar2.
llvm-svn: 119152
nodes to indicate when ha16/lo16 modifiers should be used. This lets
us pass PowerPC/indirectbr.ll.
The one annoying thing about this patch is that the MCSymbolExpr isn't
expressive enough to represent ha16(label1-label2) which we need on
PowerPC. I have a terrible hack in the meantime, but this will have
to be revisited at some point.
Last major conversion item left is global variable references.
llvm-svn: 119105
if we are given a Layout object, even in cases when the value is not fixed.
This will be needed by the final patch for the dwarf .loc support to size a
new MCDwarf fragment needed to build and emit dwarf line number tables.
llvm-svn: 115155
new VariantKind to the MCSymbolExpr seems like overkill, but I'm not sure
there's a more straightforward way to get the printing difference captured.
(i.e., x86 uses @PLT, ARM uses (PLT)).
llvm-svn: 114613
create symbols. It is extremely error prone and a source of a lot
of the remaining integrated assembler bugs on x86-64.
This fixes rdar://7807601.
llvm-svn: 99902
- Although it would be nice to allow this decoupling, the assembler needs to be able to reason about MCSymbolRefExprs in too many places to make this viable. We can use a target specific encoding of the variant if this becomes an issue.
- This patch also extends llvm-mc to support parsing of the modifiers, as opposed to lumping them in with the symbol.
llvm-svn: 98592
Document that MCExpr::Div, Mod, and the comparison operators are all
signed operators.
Document that the comparison operators' results are target-dependent.
Document that the behavior of shr is target-dependent.
llvm-svn: 95619